Platinum supported on early transition metal carbides: Efficient electrocatalysts for methanol electro-oxidation reaction in alkaline electrolyte

[1]  Shengwen Zhong,et al.  Synergistic and Durable Pt-WC Catalyst for Methanol Electro-Oxidation in Ionic Liquid Aqueous Solution , 2019 .

[2]  Jifeng Pang,et al.  Transition metal carbide catalysts for biomass conversion: A review , 2019, Applied Catalysis B: Environmental.

[3]  D. V. Dao,et al.  Au@CeO2 nanoparticles supported Pt/C electrocatalyst to improve the removal of CO in methanol oxidation reaction , 2019, Journal of Catalysis.

[4]  P. Chu,et al.  Mo2C/VC heterojunction embedded in graphitic carbon network: An advanced electrocatalyst for hydrogen evolution , 2019, Nano Energy.

[5]  P. Karthikeyan,et al.  Experimental investigation on DMFCs using reduced noble metal loading with NiTiO3 as supportive material to enhance cell performances , 2019, International Journal of Hydrogen Energy.

[6]  Q. Yan,et al.  Nanostructured metallic transition metal carbides, nitrides, phosphides, and borides for energy storage and conversion , 2019, Nano Today.

[7]  A. Moreno-Zuria,et al.  Nanostructured Mn2O3/Pt/CNTs selective electrode for oxygen reduction reaction and methanol tolerance in mixed-reactant membraneless micro-DMFC , 2019, Electrochimica Acta.

[8]  Steven R. Denny,et al.  Trends and Descriptors of Metal-Modified Transition Metal Carbides for Hydrogen Evolution in Alkaline Electrolyte , 2019, ACS Catalysis.

[9]  Lichun Yang,et al.  Noble-Metal-Free Electrocatalysts: Structural Design and Electronic Modulation of Transition-Metal-Carbide Electrocatalysts toward Efficient Hydrogen Evolution (Adv. Mater. 2/2019) , 2019, Advanced Materials.

[10]  Christopher H. Hendon,et al.  Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts , 2016, Science.

[11]  Jingguang G. Chen,et al.  Low loadings of platinum on transition metal carbides for hydrogen oxidation and evolution reactions in alkaline electrolytes. , 2016, Chemical communications.

[12]  Ping Liu,et al.  Identifying trends and descriptors for selective CO2 conversion to CO over transition metal carbides. , 2015, Chemical communications.

[13]  P. G. Rasmussen,et al.  Effects of surface oxygen on charge storage in high surface area early transition-metal carbides and nitrides , 2015 .

[14]  Y. Mortazavi,et al.  Enhanced methanol electro-oxidation activity of Pt/MWCNTs electro-catalyst using manganese oxide deposited on MWCNTs , 2014 .

[15]  Xiaoge Xu,et al.  Trends in Electrochemical Stability of Transition Metal Carbides and Their Potential Use As Supports for Low-Cost Electrocatalysts , 2014 .

[16]  M. V. Martínez-Huerta,et al.  TiC, TiCN, and TiN Supported Pt Electrocatalysts for CO and Methanol Oxidation in Acidic and Alkaline Media , 2013 .

[17]  Jun Du,et al.  NbC Nanowire-Supported Pt Nanoparticles as a High Performance Catalyst for Methanol Electrooxidation , 2013 .

[18]  Y. Mortazavi,et al.  Vanadium oxide decorated carbon nanotubes as a promising support of Pt nanoparticles for methanol electro-oxidation reaction. , 2013, Journal of colloid and interface science.

[19]  Joshua A. Schaidle,et al.  On the preparation of molybdenum carbide-supported metal catalysts , 2012 .

[20]  Shigang Sun,et al.  Origin of the current peak of negative scan in the cyclic voltammetry of methanol electro-oxidation on Pt-based electrocatalysts: a revisit to the current ratio criterion , 2012 .

[21]  M. Yin,et al.  Recent advances in catalysts for direct methanol fuel cells , 2011 .

[22]  Songhun Yoon,et al.  Ordered mesoporous WO3−X possessing electronically conductive framework comparable to carbon framework toward long-term stable cathode supports for fuel cells , 2010 .

[23]  K. Scott,et al.  Principles and Materials Aspects of Direct Alkaline Alcohol Fuel Cells , 2010 .

[24]  L. Hong,et al.  Pt and PtRu nanoparticles deposited on single-wall carbon nanotubes for methanol electro-oxidation , 2007 .

[25]  Larry J. Markoski,et al.  Air-Breathing Laminar Flow-Based Direct Methanol Fuel Cell with Alkaline Electrolyte , 2006 .

[26]  P. Shen,et al.  Electro-oxidation of Methanol on NiO-Promoted Pt ∕ C and Pd ∕ C Catalysts , 2006 .

[27]  Bo-Qing Xu,et al.  Effect of electrochemical polarization of PtRu/C catalysts on methanol electrooxidation , 2004 .

[28]  S. Srinivasan,et al.  International activities in DMFC R&D: status of technologies and potential applications , 2004 .

[29]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[30]  William A. Goddard,et al.  Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to Direct Methanol Fuel Cells , 1999 .

[31]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[32]  S. Oyama,et al.  The Chemistry of Transition Metal Carbides and Nitrides , 1996 .

[33]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[34]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[35]  B. Beden,et al.  Oxidation of methanol on a platinum electrode in alkaline medium , 1982 .

[36]  M. Boudart,et al.  Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis , 1973, Science.

[37]  A. I. Avgustinik,et al.  Reaction of titanium carbide with water , 1967 .

[38]  T. Lei,et al.  Methanol electro-oxidation on Cu@Pt/C core-shell catalyst derived from Cu-MOF , 2020 .

[39]  Yu Wang,et al.  Epitaxial growth of graphene on V8C7 nanomeshs for highly efficient and stable hydrogen evolution reaction , 2019, Journal of Catalysis.

[40]  Jingguang G. Chen,et al.  Pd-Modified Tungsten Carbide for Methanol Electro-oxidation: From Surface Science Studies to Electrochemical Evaluation , 2012 .

[41]  Yong Wang,et al.  Novel catalyst support materials for PEM fuel cells : current status and future prospects , 2009 .