Robust analysis and synthesis of linear polytopic discrete-time periodic systems via LMIs

A particular class of uncertain linear discrete-time periodic systems is considered. The problem of robust stabilization of real polytopic linear discrete-time periodic systems via a periodic state-feedback law is tackled here. Using additional slack variables and the periodic Lyapunov lemma, an extended sufficient condition of robust stabilization is proposed. Based on periodic parameter-dependent Lyapunov functions, this last condition is shown to be always less conservative than the more classic one based on the quadratic stability framework. This is illustrated on numerical examples from the literature.

[1]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[2]  Jamal Daafouz,et al.  Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties , 2001, Syst. Control. Lett..

[3]  Patrizio Colaneri,et al.  The extended periodic lyapunov lemma , 1985, Autom..

[4]  D. Kressner Large periodic Lyapunov equations: Algorithms and applications , 2003, 2003 European Control Conference (ECC).

[5]  Jakob Stoustrup,et al.  Generalized H/sub 2/ control synthesis for periodic systems , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[6]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[7]  Patrizio Colaneri,et al.  Invariant representations of discrete-time periodic systems , 2000, Autom..

[8]  Paolo Bolzern,et al.  The periodic Lyapunov equation , 1988 .

[9]  C. de Souza,et al.  An LMI approach to stabilization of linear discrete-time periodic systems , 2000 .

[10]  Antonio Tornambè,et al.  Robust output regulation and tracking for linear periodic systems under structured uncertainties , 1996, Autom..

[11]  Patrizio Colaneri,et al.  Periodic control systems , 2002 .

[12]  Jakob Stoustrup,et al.  Periodic H~2 Synthesis for Spacecraft Attitude Control with Magnetorquers , 2004 .

[13]  Marco Lovera,et al.  On the Zero Dynamics of Helicopter Rotor Loads , 1996, Eur. J. Control.

[14]  Liu Hsu,et al.  LMI characterization of structural and robust stability , 1998, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[15]  P. Colaneri Output stabilization via pole placement of discrete-time linear periodic systems , 1991 .

[16]  M. C. D. Oliveiraa,et al.  A new discrete-time robust stability condition ( , 1999 .

[17]  Alexandre Megretski,et al.  A cutting plane algorithm for robustness analysis of periodically time-varying systems , 2001, IEEE Trans. Autom. Control..

[18]  E. Mathieu Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique. , 1868 .

[19]  J. Stoustrup,et al.  Generalized H 2 Control Synthesis for Periodic Systems , 2004 .

[20]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[21]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[22]  Vlad Ionescu,et al.  The periodic Riccati equation , 2003 .

[23]  Patrizio Colaneri,et al.  Periodic control systems: Theoretical aspects , 2004 .

[24]  Marco Lovera Optimal Magnetic Momentum Control for Inertially Pointing Spacecraft , 2001, Eur. J. Control.

[25]  G. Hill On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon , 1886 .

[26]  Laurent El Ghaoui,et al.  Advances in linear matrix inequality methods in control: advances in design and control , 1999 .

[27]  Patrizio Colaneri,et al.  An LMI characterization of the class of stabilizing controllers for periodic discrete-time systems , 1999 .