Spatial and temporal patterns of land surface fluxes from remotely sensed surface temperatures within an uncertainty modelling framework

Abstract. Characterising the development of evapotranspiration through time is a difficult task, particularly when utilising remote sensing data, because retrieved information is often spatially dense, but temporally sparse. Techniques to expand these essentially instantaneous measures are not only limited, they are restricted by the general paucity of information describing the spatial distribution and temporal evolution of evaporative patterns. In a novel approach, temporal changes in land surface temperatures, derived from NOAA-AVHRR imagery and a generalised split-window algorithm, are used as a calibration variable in a simple land surface scheme (TOPUP) and combined within the Generalised Likelihood Uncertainty Estimation (GLUE) methodology to provide estimates of areal evapotranspiration at the pixel scale. Such an approach offers an innovative means of transcending the patch or landscape scale of SVAT type models, to spatially distributed estimates of model output. The resulting spatial and temporal patterns of land surface fluxes and surface resistance are used to more fully understand the hydro-ecological trends observed across a study catchment in eastern Australia. The modelling approach is assessed by comparing predicted cumulative evapotranspiration values with surface fluxes determined from Bowen ratio systems and using auxiliary information such as in-situ soil moisture measurements and depth to groundwater to corroborate observed responses.

[1]  A. Pietroniro,et al.  Remote sensing applications in hydrological modelling , 1996 .

[2]  Alfred J Prata,et al.  An Assessment of the Accuracy of Land Surface Temperature Determination from the GMS-5 VISSR , 1999 .

[3]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[4]  J. Norman,et al.  Remote sensing of surface energy fluxes at 101‐m pixel resolutions , 2003 .

[5]  Keith Beven,et al.  Multi-objective conditioning of a simple SVAT model. , 1999 .

[6]  Brent Clothier,et al.  ESTIMATION OF SOIL HEAT FLUX FROM NET RADIATION DURING THE GROWTH OF ALFALFA , 1986 .

[7]  A. J. Dolman,et al.  A note on areally-averaged evaporation and the value of the effective surface conductance , 1992 .

[8]  Le Jiang,et al.  A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations , 1999 .

[9]  Keith Beven,et al.  Conditioning a multiple‐patch SVAT Model using uncertain time‐space estimates of latent heat fluxes as inferred from remotely sensed data , 1999 .

[10]  D. Jupp,et al.  Using covariates to spatially interpolate moisture availability in the Murray–Darling Basin: A novel use of remotely sensed data , 2002 .

[11]  T. J. Lyons,et al.  Estimation of Regional Evapotranspiration through Remote Sensing , 1999 .

[12]  William P. Kustas,et al.  Evaluating the effects of subpixel heterogeneity on pixel average fluxes. , 2000 .

[13]  M. S. Moran,et al.  The scaling characteristics of remotely-sensed variables for sparsely-vegetated heterogeneous landscapes , 1997 .

[14]  William P. Kustas,et al.  Spatial Patterns in Surface Energy Balance Components Derived from Remotely Sensed Data , 2000 .

[15]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[16]  Matthew F. McCabe,et al.  Calibration of a land surface model using multiple data sets , 2005 .

[17]  Matthew F. McCabe,et al.  Modeling Evapotranspiration during SMACEX: Comparing Two Approaches for Local- and Regional-Scale Prediction , 2005 .

[18]  Robert H. Woodward,et al.  Determining Soil Moisture from Geosynchronous Satellite Infrared Data: A Feasibility Study , 1984 .

[19]  W. Crow,et al.  Multiobjective calibration of land surface model evapotranspiration predictions using streamflow observations and spaceborne surface radiometric temperature retrievals , 2003 .

[20]  K. Beven,et al.  Hydrology and Earth System Sciences , 2006 .

[21]  A. Jakeman,et al.  How much complexity is warranted in a rainfall‐runoff model? , 1993 .

[22]  S. Running,et al.  Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data , 1989 .

[23]  G. Heinemann,et al.  An integrated approach for the determination of regionale vapotranspiration using mesoscale modelling, remote sensing and boundary layer measurements , 2001 .

[24]  Keith Beven,et al.  On the sensitivity of soil-vegetation-atmosphere transfer (SVAT) schemes: equifinality and the problem of robust calibration , 1997 .

[25]  J. Norman,et al.  Surface flux estimation using radiometric temperature: A dual‐temperature‐difference method to minimize measurement errors , 2000 .

[26]  Martha C. Anderson,et al.  A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared Remote Sensing , 1997 .

[27]  Robert J. Gurney,et al.  The theoretical relationship between foliage temperature and canopy resistance in sparse crops , 1990 .

[28]  W. J. Shuttleworth,et al.  Parameter estimation of a land surface scheme using multicriteria methods , 1999 .

[29]  W. Bastiaanssen,et al.  A remote sensing surface energy balance algorithm for land (SEBAL). , 1998 .

[30]  R. Spear Eutrophication in peel inlet—II. Identification of critical uncertainties via generalized sensitivity analysis , 1980 .

[31]  Keith Beven,et al.  Bayesian estimation of uncertainty in land surface‐atmosphere flux predictions , 1997 .

[32]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[33]  J. Monteith,et al.  Radiative surface temperature and energy balance of a wheat canopy , 1986 .

[34]  B. Law,et al.  Variation of net radiation over heterogeneous surfaces: measurements and simulation in a juniper-sagebrush ecosystem. , 2000 .

[35]  S. Goward,et al.  Estimation of air temperature from remotely sensed surface observations , 1997 .

[36]  G. Kuczera Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty , 1983 .

[37]  Lu Zhang,et al.  A one-layer resistance model for estimating regional evapotranspiration using remote sensing data , 1995 .

[38]  L. McMillin,et al.  Theory and validation of the multiple window sea surface temperature technique , 1984 .