Constitutive modeling of superelastic shape memory alloys considering rate dependent non-mises tension-torsion behavior

iii

[1]  Arne. Olander AN ELECTROCHEMICAL INVESTIGATION OF SOLID CADMIUM-GOLD ALLOYS , 1932 .

[2]  Shigenori Kobayashi,et al.  Thermomechanics of Transformation Pseudoelasticity and Shape Memory Effect in Alloys , 1986 .

[3]  T. Atanacković,et al.  Moment-curvature relations for a pseudoelastic beam , 1989 .

[4]  Craig A. Rogers,et al.  One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials , 1990 .

[5]  R. Lammering,et al.  Finite Element Analysis of the Behavior of Shape Memory Alloys and their Applications. , 1993 .

[6]  Masataka Tokuda,et al.  Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces , 1995 .

[7]  P. Šittner,et al.  On Transformation Pathways of General Stress Controlled Thermoelastic Martensitic Transformation in Shape Memory Alloys , 1996 .

[8]  D. Lagoudas,et al.  A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy , 1996 .

[9]  Christian Lexcellent,et al.  Characterization, thermomechanical behaviour and micromechanical-based constitutive model of shape-memory CuZnAl single crystals , 1996 .

[10]  L. Bocher,et al.  Experimental study of pseudoelastic behaviour of a Cu Zn AI polycrystalline shape memory alloy under tension-torsion proportional and non-proportional loading tests , 1996 .

[11]  E. Sacco,et al.  A Superelastic Shape-Memory-Alloy Beam Model , 1997 .

[12]  Ferdinando Auricchio,et al.  Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior , 1997 .

[13]  Erwin Stein,et al.  Simple micromechanical model of thermoelastic martensitic transformations , 1997 .

[14]  Jan Van Humbeeck,et al.  Non-medical applications of shape memory alloys , 1999 .

[15]  D. McDowell,et al.  Mechanical behavior of an Ni-Ti shape memory alloy under axial-torsional proportional and , 1999 .

[16]  D. Lagoudas,et al.  Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms , 2000 .

[17]  G. C. Smith,et al.  Frequency-Shaping with Spatial Compensators , 2000 .

[18]  Shanglian Huang,et al.  A comprehensive description for shape memory alloys with a two-phase constitutive model , 2001 .

[19]  Hashem Ashrafiuon,et al.  Nonlinear Control of a Shape Memory Alloy Actuated Manipulator , 2002 .

[20]  Dirk Helm,et al.  Thermomechanical representation of the multiaxial behavior of shape memory alloys , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[21]  Arata Masuda,et al.  An overview of vibration and seismic applications of NiTi shape memory alloy , 2002 .

[22]  E. Werner,et al.  Temperature distribution due to localised martensitic transformation in SMA tensile test specimens , 2003 .

[23]  P. Papadopoulos,et al.  An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading , 2003 .

[24]  L G Machado,et al.  Medical applications of shape memory alloys. , 2003, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[25]  H. Herr,et al.  Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait , 2004, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[26]  M. Elahinia Effect of System Dynamics on Shape Memory Alloy Behavior and Control , 2004 .

[27]  S. Gard,et al.  The human ankle during walking: implications for design of biomimetic ankle prostheses. , 2004, Journal of biomechanics.

[28]  Renata Erica Morace,et al.  Analysis of thermomechanical behaviour of Nitinol wires with high strain rates , 2005 .

[29]  Daniel P. Ferris,et al.  An ankle-foot orthosis powered by artificial pneumatic muscles. , 2005, Journal of applied biomechanics.

[30]  Masayoshi Esashi,et al.  Medical and welfare applications of shape memory alloy microcoil actuators , 2005 .

[31]  Manuel Collet,et al.  Implementation of a multi-axial pseudoelastic model to predict the dynamic behavior of shape memory alloys , 2007 .

[32]  Dimitris C. Lagoudas,et al.  Aerospace applications of shape memory alloys , 2007 .

[33]  L. Brinson,et al.  A three-dimensional phenomenological model for martensite reorientation in shape memory alloys , 2007 .

[34]  Wael Zaki,et al.  A three-dimensional model of the thermomechanical behavior of shape memory alloys , 2007 .

[35]  Reginald DesRoches,et al.  Rate-dependent Thermo-mechanical Modelling of Superelastic Shape-memory Alloys for Seismic Applications , 2008 .

[36]  Eric Williams,et al.  An Automotive SMA Mirror Actuator: Modeling, Design, and Experimental Evaluation , 2008 .

[37]  D. Lagoudas Shape memory alloys : modeling and engineering applications , 2008 .

[38]  Valery I. Levitas,et al.  Micromechanical modeling of stress-induced phase transformations. Part 1. Thermodynamics and kinetics of coupled interface propagation and reorientation , 2009 .

[39]  Sylvain Calloch,et al.  A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings , 2009 .

[40]  Franco Molteni,et al.  SHADE: A Shape-Memory-Activated Device Promoting Ankle Dorsiflexion , 2009, Journal of Materials Engineering and Performance.

[41]  Otto T. Bruhns,et al.  Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes , 2009 .

[42]  Alessandro Reali,et al.  A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings , 2010 .

[43]  Mohammad Elahinia,et al.  Control of an automotive shape memory alloy mirror actuator , 2010 .

[44]  Anna Carla Turconi,et al.  Pilot Studies Suggesting New Applications of NiTi in Dynamic Orthoses for the Ankle Joint , 2010, Prosthetics and orthotics international.

[45]  R. Mirzaeifar,et al.  Exact solutions for pure torsion of shape memory alloy circular bars , 2010 .

[46]  W. Zaki,et al.  A constitutive model for shape memory alloys accounting for thermomechanical coupling , 2011 .

[47]  Reginald DesRoches,et al.  Continuum Mechanics and Thermodynamics Manuscript No. Analysis of the Rate-dependent Coupled Thermo- Mechanical Response of Shape Memory Alloy Bars and Wires in Tension , 2022 .

[48]  Mohammad Elahinia,et al.  Exact Solution for Bending of Shape Memory Alloy Superelastic Beams , 2011 .

[49]  S. Padula,et al.  A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions , 2011 .

[50]  M. Elahinia,et al.  Manufacturing and processing of NiTi implants: A review , 2012 .

[51]  Reza Mehrabi,et al.  Numerical Implementation of a Thermomechanical Constitutive Model for Shape Memory Alloys Using Return Mapping Algorithm and Microplane Theory , 2012 .

[52]  Minal Bhadane-Deshpande,et al.  Towards a Shape Memory Alloy Based Variable Stiffness Ankle Foot Orthosis , 2012 .

[53]  Walter Anderson Development of an Intervertebral Cage Using Additive Manufacturingwith Embedded NiTi Hinges for a Minimally Invasive Deployment , 2013 .

[54]  R. Mehrabi,et al.  3D phenomenological constitutive modeling of shape memory alloys based on microplane theory , 2013 .

[55]  Mohammad Elahinia,et al.  An SMA Passive Ankle Foot Orthosis: Design, Modeling, and Experimental Evaluation , 2014 .

[56]  Mohammad Elahinia,et al.  A rate dependent tension–torsion constitutive model for superelastic nitinol under non-proportional loading; a departure from von Mises equivalency , 2013 .