A high throughput and efficient visualization method for diffusion tensor imaging of human brain white matter employing diffusion-map space
暂无分享,去创建一个
Hamidreza Saligheh Rad | Anahita Fathi Kazerooni | Mohammad Hadi Aarabi | Narges Salehi | H. S. Rad | M. Aarabi | N. Salehi | A. Kazerooni
[1] Alon Zakai,et al. Manifold Learning: The Price of Normalization , 2008, J. Mach. Learn. Res..
[2] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[3] Christos Davatzikos,et al. Manifold based analysis of diffusion tensor images using isomaps , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..
[4] Jon Y. Hardeberg,et al. Visualization and Interactive Manipulation of Color Gamuts , 2002, Color Imaging Conference.
[5] Ghassan Hamarneh,et al. Perception-Based Visualization of Manifold-Valued Medical Images Using Distance-Preserving Dimensionality Reduction , 2011, IEEE Transactions on Medical Imaging.
[6] B. Nadler,et al. Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.
[7] B. Nadler,et al. Diffusion Maps - a Probabilistic Interpretation for Spectral Embedding and Clustering Algorithms , 2008 .
[8] P. Basser,et al. MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.
[9] Amit Singer,et al. Detecting intrinsic slow variables in stochastic dynamical systems by anisotropic diffusion maps , 2009, Proceedings of the National Academy of Sciences.
[10] J. Tenenbaum,et al. A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.
[11] Stéphane Lafon,et al. Diffusion maps , 2006 .
[12] Eric O. Postma,et al. Dimensionality Reduction: A Comparative Review , 2008 .
[13] Christos Davatzikos,et al. Manifold Learning Techniques in Image Analysis of High-dimensional Diffusion Tensor Magnetic Resonance Images , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.
[14] S. Mori,et al. Principles of Diffusion Tensor Imaging and Its Applications to Basic Neuroscience Research , 2006, Neuron.