The role of three-center/four-electron bonds in superelectrophilic dirhodium carbene and nitrene catalytic intermediates.

Three-center/four-electron (3c/4e) bonds are important bonding motifs that dictate the electronic structure, and thereby the reactivity, of metal-metal bonded carbene and nitrene intermediate complexes that are crucial to the dirhodium-catalyzed functionalization of hydrocarbons. In this Perspective article, general features of the 3c/4e bond are presented and discussed in comparison to two-center/two-electron (2c/2e) bonds. Specifically, 3c/4e bonding interactions lead to longer distances between the atoms involved and measurably weaker bonds. Additionally, excited states derived from the 3c/4e bonding manifold are lower in energy than those derived from a 2c/2e manifold, signifying a greater degree of reactivity in the former case. Three coterminous 3c/4e Ru-Ru-N bonds are present in metal-metal/metal-ligand multiply bonded diruthenium terminal nitrido compounds. This bonding situation results in an unusual superelectrophilic character of the nitride nitrogen atom, exemplified by its insertion into aryl C-H bonds via an electrophilic aromatic substitution mechanism. The key catalytic intermediates in dirhodium-catalyzed C-H functionalization reactions, dirhodium carbene and dirhodium nitrene complexes, may also be described as superelectrophilic by virtue of 3c/4e Rh-Rh-C(or N) σ and π bonds. These 3c/4e bonding interactions set apart dirhodium carbene and nitrene intermediates from other, less electrophilic, carbene or nitrene species.

[1]  J. Berry,et al.  Aryl C-H amination by diruthenium nitrides in the solid state and in solution at room temperature: experimental and computational study of the reaction mechanism. , 2011, Journal of the American Chemical Society.

[2]  Vidar R. Jensen,et al.  Nature of the Transition Metal–Carbene Bond in Grubbs Olefin Metathesis Catalysts , 2011 .

[3]  J. Berry,et al.  Evidence for a one-electron mechanistic regime in dirhodium-catalyzed intermolecular C-H amination. , 2011, Chemistry.

[4]  M. Mellon,et al.  Silver-Catalyzed C-C Bond Formation Between Methane and Ethyl Diazoacetate in Supercritical CO2 , 2011, Science.

[5]  C. Anthon,et al.  Heterobimetallic nitride complexes from terminal chromium(V) nitride complexes: hyperfine coupling increases with distance. , 2011, Angewandte Chemie.

[6]  S. Stahl,et al.  Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. , 2011, Chemical reviews.

[7]  A. Borovik Role of metal-oxo complexes in the cleavage of C-H bonds. , 2011, Chemical Society reviews.

[8]  Daniel Morton,et al.  Guiding principles for site selective and stereoselective intermolecular C-H functionalization by donor/acceptor rhodium carbenes. , 2011, Chemical Society reviews.

[9]  X. Zhang,et al.  Catalytic C-H functionalization by metalloporphyrins: recent developments and future directions. , 2011, Chemical Society reviews.

[10]  Y. Tu,et al.  Direct Sp3α-C-H activation and functionalization of alcohol and ether. , 2011, Chemical Society reviews.

[11]  R. Crabtree,et al.  C-H oxidation by platinum group metal oxo or peroxo species. , 2011, Chemical Society reviews.

[12]  S. Lippard,et al.  Dioxygen activation in soluble methane monooxygenase. , 2011, Accounts of chemical research.

[13]  J. Berry,et al.  Chemically reversible four-electron oxidation and reduction utilizing two inorganic functional groups. , 2011, Journal of the American Chemical Society.

[14]  T. Mei,et al.  Bystanding F+ oxidants enable selective reductive elimination from high-valent metal centers in catalysis. , 2011, Angewandte Chemie.

[15]  Jian Sun,et al.  Computational interpretation of the stereoselectivity for a dirhodium tetracarboxylate-catalyzed amidation reaction , 2011 .

[16]  T. Gunnoe,et al.  Catalytic oxy-functionalization of methane and other hydrocarbons: fundamental advancements and new strategies. , 2011, ChemSusChem.

[17]  D. Sieh,et al.  4d vs. 5d - Reactivity and Fate of Terminal Nitrido Complexes of Rhodium and Iridium , 2010 .

[18]  P. Chirik,et al.  Photolysis and thermolysis of bis(imino)pyridine cobalt azides: C-H activation from putative cobalt nitrido complexes. , 2010, Journal of the American Chemical Society.

[19]  B. Scott,et al.  Uranium azide photolysis results in C-H bond activation and provides evidence for a terminal uranium nitride. , 2010, Nature chemistry.

[20]  J. Berry,et al.  Aryl C-H bond amination by an electrophilic diruthenium nitride. , 2010, Journal of the American Chemical Society.

[21]  H. Davies,et al.  Solvent-free catalytic enantioselective C–C bond forming reactions with very high catalyst turnover numbers , 2010 .

[22]  P. Chen,et al.  Tuning the Steric Properties of a Metathesis Catalyst for Copolymerization of Norbornene and Cyclooctene toward Complete Alternation , 2010 .

[23]  Melanie S Sanford,et al.  Palladium-catalyzed ligand-directed C-H functionalization reactions. , 2010, Chemical reviews.

[24]  P. R. Montellano Hydrocarbon hydroxylation by cytochrome P450 enzymes. , 2010 .

[25]  Lei Zhou,et al.  Catalytic carbene insertion into C-H bonds. , 2010, Chemical reviews.

[26]  J. Kuo,et al.  Mechanistic insights into the substrate-controlled stereochemistry of glycals in one-pot rhodium-catalyzed aziridination and aziridine ring opening. , 2010, Chemistry.

[27]  A. Kapdi,et al.  Transition-metal-catalyzed direct arylation of (hetero)arenes by C-H bond cleavage. , 2009, Angewandte Chemie.

[28]  J. Bendix,et al.  Partial charges as reactivity descriptors for nitrido complexes , 2009 .

[29]  H. Davies,et al.  Application of donor/acceptor-carbenoids to the synthesis of natural products. , 2009, Chemical Society reviews.

[30]  B. Stokes,et al.  Examination of the mechanism of Rh(2)(II)-catalyzed carbazole formation using intramolecular competition experiments. , 2009, The Journal of organic chemistry.

[31]  Karl Heinz Dötz,et al.  Fischer carbene complexes in organic synthesis: metal-assisted and metal-templated reactions. , 2009, Chemical reviews.

[32]  J. Autschbach,et al.  Computational study on the selectivity of donor/acceptor-substituted rhodium carbenoids. , 2009, The Journal of organic chemistry.

[33]  A. Rogachev,et al.  Isolation and hydrogenation of a complex with a terminal iridium-nitrido bond. , 2009, Angewandte Chemie.

[34]  J. Du Bois,et al.  Understanding the differential performance of Rh2(esp)2 as a catalyst for C-H amination. , 2009, Journal of the American Chemical Society.

[35]  Christine G. Espino,et al.  A mechanistic analysis of the Rh-catalyzed intramolecular C–H amination reaction , 2009 .

[36]  S. Nolan,et al.  Carbenes : Synthesis, properties, and organometallic chemistry , 2009 .

[37]  B. Stokes,et al.  Rh(2)(II)-catalyzed synthesis of carbazoles from biaryl azides. , 2009, The Journal of organic chemistry.

[38]  J. Berry TERMINAL NITRIDO AND IMIDO COMPLEXES OF THE LATE TRANSITION METALS , 2009 .

[39]  J. Berry,et al.  Delocalized metal-metal and metal-ligand multiple bonding in a linear Ru-Ru[triple bond]N unit: elongation of a traditionally short Ru[triple bond]N bond. , 2008, Angewandte Chemie.

[40]  T. Cundari,et al.  Copper-nitrene complexes in catalytic C-H amination. , 2008, Angewandte Chemie.

[41]  M. Fañanás‐Mastral,et al.  C-H insertion processes on stabilized indolyl and ortho-aminophenyl Fischer carbene complexes: synthesis of azepino[3,2,1-hi] indole, benzazepine and indole derivatives. , 2008, Chemistry.

[42]  M. M. Díaz‐Requejo,et al.  Coinage metal catalyzed C-H bond functionalization of hydrocarbons. , 2008, Chemical reviews.

[43]  J. Ellman,et al.  Direct functionalization of nitrogen heterocycles via Rh-catalyzed C-H bond activation. , 2008, Accounts of chemical research.

[44]  J. D. Bois,et al.  A chiral rhodium carboxamidate catalyst for enantioselective C-H amination. , 2008, Journal of the American Chemical Society.

[45]  T. Driver,et al.  Dirhodium(II)-catalyzed intramolecular C-H amination of aryl azides. , 2008, Angewandte Chemie.

[46]  G. Ertl,et al.  Reactions at surfaces: from atoms to complexity (Nobel Lecture). , 2008, Angewandte Chemie.

[47]  M. Reiher,et al.  Gas-phase C-H and N-H bond activation by a high valent nitrido-iron dication and NH-transfer to activated olefins. , 2008, Journal of the American Chemical Society.

[48]  H. Davies,et al.  Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion , 2008, Nature.

[49]  P. Compain,et al.  Intramolecular rhodium-catalyzed activation of α-amino C-H bonds : decisive influence of conformational factors in the synthesis of bicyclic aminals from N-sulfamoyloxyacetyl azacycloalkanes , 2007 .

[50]  F. Bickelhaupt,et al.  Hypervalence and the delocalizing versus localizing propensities of H3–, Li3–, CH5– and SiH5– , 2007 .

[51]  C. Che,et al.  A DFT study on the mechanism of Rh2(II,II)-catalyzed intramolecular amidation of carbamates. , 2007, Chemistry, an Asian journal.

[52]  V. Gevorgyan,et al.  Direct transition metal-catalyzed functionalization of heteroaromatic compounds. , 2007, Chemical Society reviews.

[53]  B. Stokes,et al.  Intramolecular C-H amination reactions: exploitation of the Rh(2)(II)-catalyzed decomposition of azidoacrylates. , 2007, Journal of the American Chemical Society.

[54]  A. Hengge,et al.  Mechanism of rhodium-catalyzed carbene formation from diazo compounds. , 2007, Organic letters.

[55]  D. Mansuy,et al.  A brief history of the contribution of metalloporphyrin models to cytochrome P450 chemistry and oxidation catalysis , 2007 .

[56]  H. Gray,et al.  Strikingly similar electronic structures of [Mn(N)(CN)5]3− and [Mn(NO)(CN)5]3− , 2007 .

[57]  K. W. Fiori,et al.  Catalytic intermolecular amination of C-H bonds: method development and mechanistic insights. , 2007, Journal of the American Chemical Society.

[58]  M. Doyle Perspective on dirhodium carboxamidates as catalysts. , 2006, The Journal of organic chemistry.

[59]  H. Davies,et al.  Dirhodium tetracarboxylates derived from adamantylglycine as chiral catalysts for enantioselective C-h aminations. , 2006, Organic letters.

[60]  K. Godula,et al.  C-H Bond Functionalization in Complex Organic Synthesis , 2006, Science.

[61]  M. Sanford,et al.  Transition metal catalyzed oxidative functionalization of carbon-hydrogen bonds , 2006 .

[62]  Gernot Frenking,et al.  Chemical bonding in transition metal carbene complexes , 2005 .

[63]  T. Ren,et al.  Azidotetrakis(diarylformamidinate)diruthenium(II,III) Compounds: Synthesis, Molecular Structures and Voltammetric Properties; Linear Free Energy Relationships in Dinuclear Compounds VII*,† , 2005 .

[64]  Ilme Schlichting,et al.  Structure and chemistry of cytochrome P450. , 2005, Chemical reviews.

[65]  Christine G. Espino,et al.  Expanding the scope of C-H amination through catalyst design. , 2004, Journal of the American Chemical Society.

[66]  P. Hiberty,et al.  What makes the trifluoride anion F3 - so special? A breathing-orbital valence bond ab initio study. , 2004, Journal of the American Chemical Society.

[67]  Andrew C. Flick,et al.  Rhodium(II)-catalyzed aziridination of allyl-substituted sulfonamides and carbamates. , 2004, The Journal of organic chemistry.

[68]  Sason Shaik,et al.  Mechanism of oxidation reactions catalyzed by cytochrome p450 enzymes. , 2004, Chemical reviews.

[69]  P. Müller,et al.  Intramolecular Asymmetric Amidations of Sulfonamides and Sulfamates Catalyzed by Chiral Dirhodium(II) Complexes , 2004 .

[70]  S. Peng,et al.  Highly electrophilic (salen)ruthenium(VI) nitrido complexes. , 2004, Journal of the American Chemical Society.

[71]  D. Nowlan,et al.  Isotope effects and the nature of selectivity in rhodium-catalyzed cyclopropanations. , 2003, Journal of the American Chemical Society.

[72]  C. Che,et al.  Nitrido-ruthenium(VI) and -osmium(VI) complexes of multianionic chelating (N, O) ligands. Reactions with nucleophiles, electrophiles and oxidizing agents , 2003 .

[73]  N. Chatani,et al.  Catalytic Methods for C ? H Bond Functionalization: Application in Organic Synthesis , 2003 .

[74]  E. Nakamura,et al.  Theoretical Studies on Diastereo‐ and Enantioselective Rhodium‐Catalyzed Cyclization of Diazo Compound via Intramolecular CH Bond Insertion , 2003 .

[75]  T. Ren,et al.  Bis-Adducts of Substituted Phenylethynyl on a Ru2(DMBA)4 Core: Effect of Donor/Acceptor Modifications , 2003 .

[76]  M. Abu‐Omar,et al.  Nitrido and imido transition metal complexes of Groups 6–8 , 2003 .

[77]  C. Che,et al.  Chiral rhodium(II,II) dimers catalyzed enantioselective intramolecular aziridination of sulfonamides and carbamates , 2003 .

[78]  H. Davies,et al.  Catalytic enantioselective C-H activation by means of metal-carbenoid-induced C-H insertion. , 2003, Chemical reviews.

[79]  R. Friesner,et al.  Mechanistic studies on the hydroxylation of methane by methane monooxygenase. , 2003, Chemical reviews.

[80]  H. Davies,et al.  Dirhodium tetraprolinate-catalyzed asymmetric cyclopropanations with high turnover numbers. , 2003, Organic letters.

[81]  T. Ren,et al.  Ru2(DMBA)4(BF4)2 and Ru2(DMBA)4(NO3)2: the first examples of diruthenium compounds containing BF4− and NO3− as ligands , 2003 .

[82]  C. Che,et al.  Nitrido ruthenium porphyrins: synthesis, characterization, and amination reactions with hydrocarbon or silyl enol ethers. , 2003, Angewandte Chemie.

[83]  S. Kitagaki,et al.  Dirhodium(II) tetrakis[N-tetrachlorophthaloyl-(S)-tert-leucinate]: a new chiral Rh(II) catalyst for enantioselective amidation of CH bonds , 2002 .

[84]  J. Du Bois,et al.  A unique and highly efficient method for catalytic olefin aziridination. , 2002, Journal of the American Chemical Society.

[85]  M. Doyle,et al.  The Influence of Ligands on Dirhodium(II) on Reactivity and Selectivity in Metal Carbene Reactions , 2002 .

[86]  J. Bercaw,et al.  Understanding and exploiting C–H bond activation , 2002, Nature.

[87]  T. Ren,et al.  Tetrakis(N,N'-dimethylbenzamidinato)diruthenium(III) compounds bearing axial chloro and alkynyl ligands: a new family of redox rich diruthenium compounds. , 2002, Inorganic chemistry.

[88]  E. Nakamura,et al.  Mechanism of C-H Bond Activation/C-C Bond Formation Reaction between Diazo Compound and Alkane catalyzed by Dirhodium Tetracarboxylate , 2002 .

[89]  F. Cotton,et al.  The first dirhodium tetracarboxylate molecule without axial ligation: new insight into the electronic structures of molecules with importance in catalysis and other reactions. , 2002, Journal of the American Chemical Society.

[90]  M. Pirrung,et al.  Rhodium chemzymes: Michaelis-Menten kinetics in dirhodium(II) carboxylate-catalyzed carbenoid reactions. , 2002, Journal of the American Chemical Society.

[91]  Maarten Merkx,et al.  Dioxygen Activation and Methane Hydroxylation by Soluble Methane Monooxygenase: A Tale of Two Irons and Three Proteins. , 2001, Angewandte Chemie.

[92]  M. Jennings,et al.  Synthesis and Reactivity of a Diruthenium Diazoalkane Complex , 2001 .

[93]  T. Kitamura,et al.  Catalytic functionalization of arenes and alkanes via C-H bond activation. , 2001, Accounts of chemical research.

[94]  S. Eapen,et al.  Syntheses, structural determination, and electrochemistry of Ru(2)(Fap)(4)Cl and Ru(2)(Fap)(4)(NO)Cl. , 2001, Inorganic chemistry.

[95]  Christine G. Espino,et al.  A Rh-Catalyzed C-H Insertion Reaction for the Oxidative Conversion of Carbamates to Oxazolidinones. , 2001, Angewandte Chemie.

[96]  G. Albertin,et al.  Preparation of Diazoalkane Complexes of Osmium(II) , 2000 .

[97]  J. Snyder,et al.  Rhodium(II)-Catalyzed Equilibration of Push-Pull Carbonyl and Ammonium Ylides. A Computationally Based Understanding of the Reaction Pathway , 2000 .

[98]  D. Lichtenberger,et al.  Metal−Metal Bonding in Rh2(O2CCF3)4: Extensive Metal−Ligand Orbital Mixing Promoted by Filled Fluorine Orbitals , 2000 .

[99]  H. Davies Dirhodium Tetra(N‐arylsulfonylprolinates) as Chiral Catalysts For Asymmetric Transformations of Vinyl‐ and Aryldiazoacetates , 1999 .

[100]  P. Mueller,et al.  Rhodium(II)-catalyzed nitrene transfer with phenyliodonium ylides , 1998 .

[101]  P. Müller,et al.  The rhodium(II)-catalyzed aziridination of olefins with {[(4-nitrophenyl)sulfonyl]imino}phenyl-lambda 3 -iodane , 1998 .

[102]  David C. Forbes,et al.  Recent Advances in Asymmetric Catalytic Metal Carbene Transformations. , 1998, Chemical reviews.

[103]  J. Snyder,et al.  Dirhodium(II) Tetracarboxylate carbenoids as catalytic intermediates , 1998 .

[104]  T. Ye,et al.  Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides , 1998 .

[105]  Yvan Jacquier,et al.  Rhodium(II)‐Catalyzed CH Insertions with {[(4‐Nitrophenyl)sulfonyl]imino}phenyl‐λ3‐iodane , 1997 .

[106]  G. Ertl,et al.  Vibrations, coverage, and lateral order of atomic nitrogen and formation of NH3 on Ru(10̅̅10) , 1997 .

[107]  G. Ertl,et al.  The adsorption of atomic nitrogen on Ru(0001): geometry and energetics , 1996, cond-mat/9612024.

[108]  P. Müller,et al.  Rhodium(II)‐catalyzed aziridinations and CH insertions with [N‐(p‐nitrobenzenesulfonyl)imino]phenyliodinane , 1996 .

[109]  Hong Liang,et al.  Synthesis and Reactivity of [PPh4][Ru(N)Me3(SSiMe3)], a Ruthenium(VI) Trimethylsilanethiolate Complex , 1996 .

[110]  P. Müller,et al.  A method for rhodium(II)-catalyzed aziridination of olefins , 1996 .

[111]  A. Rheingold,et al.  Predicting the Diastereoselectivity of Rh-Mediated Intramolecular C−H Insertion , 1996 .

[112]  A. Rheingold,et al.  Molecular complex design: bridging the tetrakiscarboxylatodirhodium core , 1995 .

[113]  M. Hidai,et al.  Synthesis and reactivities of diazoalkane complexes , 1995 .

[114]  G. Ertl,et al.  Dissociative chemisorption of nitrogen on Ru(0001) , 1993 .

[115]  W. P. Boone,et al.  Electronic and steric control in carbon-hydrogen insertion reactions of diazoacetoacetates catalyzed by dirhodium(II) carboxylates and carboxamides , 1993 .

[116]  P. Chaloner MetalLigand Multiple Bonds , 1989 .

[117]  F. Cotton,et al.  Electronic excitation MO assignment of rhodium carboxylato complexes, Rh2(O2CR)4(Lax)2, using MCD experiment and theory , 1988 .

[118]  R. Pearson Electronic spectra and chemical reactivity , 1988 .

[119]  S. Gellman,et al.  Functionalized nitrogen atom transfer catalyzed by cytochrome P-450 , 1985 .

[120]  V. Miskowski,et al.  Polarized electronic spectra of dirhodium(II) tetraacetate , 1984 .

[121]  S. Gellman,et al.  Intramolecular nitrene carbon-hydrogen insertions mediated by transition-metal complexes as nitrogen analogs of cytochrome P-450 reactions , 1983 .

[122]  B. Haymore,et al.  Diazoalkane complexes of molybdenum and tungsten , 1982 .

[123]  A. Anciaux,et al.  Transition-Metal-Catalyzed Reactions of Diazo Compounds. 1. Cyclopropanation of Double Bonds , 1980 .

[124]  J. G. Norman,et al.  Strength and trans influence of the rhodium-rhodium bond in rhodium(II) carboxylate dimers , 1978 .

[125]  J. Kelemen,et al.  LCAO MO theory illustrated by its application to H2 , 1971 .

[126]  W. R. Robinson,et al.  Mononuclear and Polynuclear Chemistry of Rhenium (III): Its Pronounced Homophilicity , 1964, Science.

[127]  C. A. Coulson,et al.  XXXIV. Notes on the molecular orbital treatment of the hydrogen molecule , 1949 .

[128]  H. Davies,et al.  Functionalization of carbon-hydrogen bonds through transition metal carbenoid insertion. , 2010, Topics in current chemistry.

[129]  J. D. Bois,et al.  Metal-catalyzed oxidations of C-H to C-N bonds. , 2010, Topics in current chemistry.

[130]  Clark R. Landis,et al.  Valency and Bonding: Contents , 2005 .

[131]  R. Crabtree Alkane C–H activation and functionalization with homogeneous transition metal catalysts: a century of progress—a new millennium in prospect , 2001 .

[132]  R. Grubbs,et al.  The development of L2X2Ru=CHR olefin metathesis catalysts: an organometallic success story. , 2001, Accounts of chemical research.

[133]  F. Cotton,et al.  FIRST PADDLEWHEEL COMPLEX WITH A DOUBLY-BONDED IR26+ CORE , 1999 .

[134]  C. Che,et al.  Nitrido-ruthenium(VI) and -osmium(VI) complexes containing chelating multianionic (N, O) ligands. Synthesis, crystal structures and reactions with triphenylphosphine , 1998 .

[135]  M. E. Alonso,et al.  Kinetics of the dirhodium tetraacetate catalyzed decomposition of ethyl diazoacetate in 1,4-dioxane. Is nitrogen involved in the transition state? , 1989 .

[136]  H. Fischer,et al.  Regiospecific insertion of benzylidene ligands into the α-C–H bond of ethers , 1985 .

[137]  J. Griffin,et al.  Stereoselectivity of catalytic cyclopropanation reactions. Catalyst dependence in reactions of ethyl diazoacetate with alkenes , 1984 .

[138]  J. Griffin,et al.  Correlations between catalytic reactions of diazo compounds and stoichiometric reactions of transition-metal carbenes with alkenes. Mechanism of the cyclopropanation reaction , 1984 .

[139]  F. Albert Cotton,et al.  Multiple bonds between metal atoms , 1982 .

[140]  A. Hubert,et al.  RHODIUM(II) CARBOXYLATES- NOVEL HIGHLY EFFICIENT CATALYSTS FOR THE CYCLOPROPANATION OF ALKENES WITH ALKYL DIAZOACETATES , 1976 .

[141]  A. Hubert,et al.  Transition metal catalysed reactions of diazocompounds - II insertion in the hydroxylic bond , 1973 .