Nozzle design in cw hydrogen fluoride chemical laser

Different geometry nozzles used in CW hydrogen fluoride chemical laser are investigated. Four geometry parameters, including throat width; area ratio; axis length and base width are considered. The flow properties, laser outcoupling power and small signal gain (SSG) of a Fabry-Perot resonator are calculated. The results show that when throat width and area ratio increase, the power and SSG peak will decrease in varying degree; they also varied when axis length changed; larger base width is related to lower cavity pressure, and smaller base width is related higher cavity pressure.