Predicting Defect Priority Based on Neural Networks

Existing defect management tools provide little information on how important/urgent for developers to fix defects reported. Manually prioritizing defects is time-consuming and inconsistent among different people. To improve the efficiency of troubleshooting, the paper proposes to employ neural network techniques to predict the priorities of defects, adopt evolutionary training process to solve error problems associated with new features, and reuse data sets from similar software systems to speed up the convergence of training. A framework is built up for the model evaluation, and a series of experiments on five different software products of an international healthcare company to demonstrate the feasibility and effectiveness.