Epitaxially Defined FinFET: Variability Resistant and High-Performance Technology

FinFET technology is prone to suffer from line edge roughness (LER)-based VT variation with scaling. It also lacks a simple implementation of multiple VT technology needed for power management. To address these challenges, in this paper we present an epitaxially defined FinFET (EDFinFET) as an alternate to FinFET architecture for nodes 15 nm and beyond. We show by statistical simulations that EDFinFET reduces overall VT variability with an 80% reduction in LER-based variability in comparison with FinFETs. We present dynamic threshold MOS (DTMOS) configuration of EDFinFET using the available body terminal to individual transistors. The DTMOS configuration reduces LER-based variability by 90% and overall variability by 59%. It also has excellent subthreshold slope (SS) and gives 43% higher ION compared with FinFETs. Meanwhile, EDFinFET shows poorer SS and lower ION than FinFET due to single gate control. However, it is capable of multiple VT, which leads to circuit level power optimization.

[1]  S. Lodha,et al.  Epitaxialy defined (ED) FinFET: to reduce VT variability and enable multiple VT , 2012, 70th Device Research Conference.

[2]  M. Jurczak,et al.  Impact of LER and Random Dopant Fluctuations on FinFET Matching Performance , 2008, IEEE Transactions on Nanotechnology.

[3]  M. Lee,et al.  Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors , 2005 .

[4]  F. Lázaro,et al.  Langevin-dynamics study of the dynamical properties of small magnetic particles , 1998 .

[5]  Udayan Ganguly,et al.  Scalability enhancement of FG NAND by FG shape modification , 2010, 2010 IEEE International Memory Workshop.

[6]  K. Fujita,et al.  Advanced channel engineering achieving aggressive reduction of VT variation for ultra-low-power applications , 2011, 2011 International Electron Devices Meeting.

[7]  T. Krishnamohan Band-engineering of novel channel materials for high performance nanoscale MOSFETs , 2008, 2008 International Conference on Simulation of Semiconductor Processes and Devices.

[8]  J. Liaw,et al.  A 25-nm gate-length FinFET transistor module for 32nm node , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[9]  Ying Zhang,et al.  Extension and source/drain design for high-performance FinFET devices , 2003 .

[10]  Andrew R. Brown,et al.  Statistical variability and reliability in nanoscale FinFETs , 2011, 2011 International Electron Devices Meeting.

[11]  K. Endo,et al.  Synthetic electric field tunnel FETs: Drain current multiplication demonstrated by wrapped gate electrode around ultrathin epitaxial channel , 2013, 2013 Symposium on VLSI Technology.

[12]  H. C. de Graaff,et al.  Measurements of bandgap narrowing in Si bipolar transistors , 1976 .

[13]  Massimo Vanzi,et al.  A physically based mobility model for numerical simulation of nonplanar devices , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[14]  Jeffrey Bokor,et al.  Dynamic threshold-voltage MOSFET (DTMOS) for ultra-low voltage VLSI , 1997 .

[15]  Xin Sun,et al.  Tri-Gate Bulk MOSFET Design for CMOS Scaling to the End of the Roadmap , 2008, IEEE Electron Device Letters.

[16]  S. Keller,et al.  Formation of sub-10 nm width InGaAs finFETs of 200 nm height by atomic layer epitaxy , 2013, 71st Device Research Conference.

[17]  J. Bokor,et al.  Sensitivity of double-gate and FinFETDevices to process variations , 2003 .

[18]  Jin-Woo Han,et al.  Body effects in tri-gate bulk FinFETs for DTMOS , 2006, 2006 IEEE Nanotechnology Materials and Devices Conference.

[19]  H.C. de Graaff,et al.  Bandgap narrowing in silicon bipolar transistors , 1977, IEEE Transactions on Electron Devices.

[20]  E. Kane Theory of Tunneling , 1961 .

[21]  Asen Asenov RANDOM DOPANT INDUCED THRESHOLD VOLTAGE LOWERING AND FLUCTUATIONS IN SUB 50 NM MOSFETS: A STATISTICAL 3D 'ATOMISTIC' SIMULATION STUDY , 1999 .

[22]  A. Asenov,et al.  Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness , 2003 .

[23]  A. Asenov,et al.  Statistical Threshold-Voltage Variability in Scaled Decananometer Bulk HKMG MOSFETs: A Full-Scale 3-D Simulation Scaling Study , 2011, IEEE Transactions on Electron Devices.

[24]  S. Lodha,et al.  Epi defined (ED) FinFET: An alternate device architecture for high mobility Ge channel integration in PMOSFET , 2013, 2013 IEEE 5th International Nanoelectronics Conference (INEC).

[25]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[26]  Sung-Joo Hong,et al.  Mobility Enhancement of Peripheral PMOSFET Using e-SiGe Source and Drain in Sub-50nm DRAM , 2012, 2012 4th IEEE International Memory Workshop.

[27]  Chih-Hong Hwang,et al.  Discrete-dopant-induced characteristic fluctuations in 16nm multiple-gate silicon-on-insulator devices , 2007 .

[28]  W. Fichtner,et al.  Random dopant fluctuation modelling with the impedance field method , 2003, International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003..

[29]  Volkan Kursun,et al.  Multi-Threshold Voltage FinFET Sequential Circuits , 2011, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[30]  Wolfgang Rösner,et al.  Simulation of nanoscale MOSFETs using modified drift-diffusion and hydrodynamic models and comparison with Monte Carlo results , 2006 .

[31]  C. Canali,et al.  Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature , 1975, IEEE Transactions on Electron Devices.

[32]  Shao-Ming Yu,et al.  Discrete Dopant Fluctuations in 20-nm/15-nm-Gate Planar CMOS , 2008, IEEE Transactions on Electron Devices.

[33]  G. Masetti,et al.  Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon , 1983, IEEE Transactions on Electron Devices.

[34]  D. Klaassen,et al.  A new recombination model for device simulation including tunneling , 1992 .

[35]  Naoto Horiguchi,et al.  Bulk FinFET fabrication with new approaches for oxide topography control using dry removal techniques , 2011 .

[36]  H. S. Luftman,et al.  Doping of Si thin films by low‐temperature molecular beam epitaxy , 1993 .