Snap buckling of a confined thin elastic sheet

A growing or compressed thin elastic sheet adhered to a rigid substrate can exhibit a buckling instability, forming an inward hump. Our study shows that the strip morphology depends on the delicate balance between the compression energy and the bending energy. We find that this instability is a first-order phase transition between the adhered solution and the buckled solution whose main control parameter is related to the sheet stretchability. In the nearly unstretchable regime, we provide an analytic expression for the critical threshold. Compressibility is the key assumption which allows us to resolve the apparent paradox of an unbounded pressure exerted on the external wall by a confined flexible loop.

[1]  G. Napoli,et al.  Growth-induced blisters in a circular tube , 2013, 1311.6909.

[2]  Arezki Boudaoud,et al.  The macroscopic delamination of thin films from elastic substrates , 2009, Proceedings of the National Academy of Sciences.

[3]  L. Pauchard,et al.  The buckling and invagination process during consolidation of colloidal droplets , 2012, 1211.1551.

[4]  P. L.,et al.  Contact and compression of elastic spherical shells : the physics of a ` ping ± pong ’ ball , 2002 .

[5]  John A Rogers,et al.  Controlled buckling of semiconductor nanoribbons for stretchable electronics , 2006, Nature nanotechnology.

[6]  Matti Ristinmaa,et al.  Behaviour of the extensible elastica solution , 2001 .

[7]  Leslie K. Guice,et al.  BUCKLING MODELS OF THIN CIRCULAR PIPES ENCASED IN RIGID CAVITY , 1997 .

[8]  S. Karamanos,et al.  Stability of confined thin-walled steel cylinders under external pressure , 2009 .

[9]  G. Tomassetti,et al.  On morphoelastic rods , 2014, 1402.3763.

[10]  William S Klug,et al.  Mechanical collapse of confined fluid membrane vesicles , 2014, Biomechanics and Modeling in Mechanobiology.

[11]  M. Trejo,et al.  Spiral patterns in the packing of flexible structures. , 2006, Physical review letters.

[12]  B. Brunt The calculus of variations , 2003 .

[13]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[14]  L. Mahadevan,et al.  Confined developable elastic surfaces: cylinders, cones and the Elastica , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Dominic Vella,et al.  The ‘Sticky Elastica’: delamination blisters beyond small deformations , 2013 .

[16]  Derek E. Moulton,et al.  Dynamics of snapping beams and jumping poppers , 2013, 1310.3703.

[17]  Randy C. Paffenroth,et al.  Calculation of the Stability Index in Parameter-Dependent Calculus of Variations Problems: Buckling of a Twisted Elastic Strut , 2002, SIAM J. Appl. Dyn. Syst..

[18]  Robert S. Manning,et al.  Isoperimetric conjugate points with application to the stability of DNA minicircles , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  Sébastien Neukirch,et al.  Elastocapillary snapping: capillarity induces snap-through instabilities in small elastic beams. , 2013, Physical review letters.

[20]  Osman Kahraman,et al.  Morphogenesis of membrane invaginations in spherical confinement , 2012, 1201.2518.

[21]  Maria A. Holland,et al.  On the mechanics of thin films and growing surfaces , 2013, Mathematics and mechanics of solids : MMS.

[22]  E. Kuhl,et al.  Mechanics of the brain: perspectives, challenges, and opportunities , 2015, Biomechanics and Modeling in Mechanobiology.

[23]  C J Budd,et al.  Multi-layered folding with voids , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  L. Rayleigh,et al.  The theory of sound , 1894 .

[25]  E. Dill,et al.  Kirchhoff's theory of rods , 1992 .

[26]  Dominic Vella,et al.  The role of extensibility in the birth of a ruck in a rug , 2015, 1508.05380.