Systematic Construction of Analytic Calculi for Logics of Formal Inconsistency

This paper makes a substantial step towards automatization of paraconsistent reasoning by providing a method for a systematic generation of analytic calculi for thousands of Logics of Formal (In)consistency. The method relies on non-deterministic three-valued semantics for these logics, and produces in a modular way uniform Gentzen-type rules, corresponding to a variety of schemata considered in the literature of LFIs.

[1]  Newton C. A. da Costa,et al.  On the theory of inconsistent formal systems , 1974, Notre Dame J. Formal Log..

[2]  Newton C. A. da Costa,et al.  Aspects of Paraconsistent Logic , 1995, Log. J. IGPL.

[3]  Arnon Avron,et al.  Canonical Propositional Gentzen-Type Systems , 2001, IJCAR.

[4]  Walter Carnielli Tableau Systems for Logics of Formal Inconsistency , 2001 .

[5]  Walter A. Carnielli,et al.  A Taxonomy of C-Systems , 2001 .

[6]  A. Avron A Nondeterministic View on Nonclassical Negations , 2004 .

[7]  A. Avron Non-deterministic Semantics for Families of Paraconsistent Logics , 2004 .

[8]  Arnon Avron,et al.  Non-deterministic Matrices and Modular Semantics of Rules , 2005 .

[9]  Arnon Avron,et al.  Non-deterministic Multiple-valued Structures , 2005, J. Log. Comput..

[10]  Anna Zamansky,et al.  Many-Valued Non-deterministic Semantics for First-Order Logics of Formal (In)consistency , 2006, Algebraic and Proof-theoretic Aspects of Non-classical Logics.

[11]  Arnon Avron,et al.  Cut-Free Ordinary Sequent Calculi for Logics Having Generalized Finite-Valued Semantics , 2007, Logica Universalis.

[12]  Arnon Avron Non-deterministic semantics for logics with a consistency operator , 2007, Int. J. Approx. Reason..

[13]  M. Finger,et al.  A KE Tableau for a Logic of Formal Inconsistency , 2007 .

[14]  Anna Zamansky,et al.  Canonical Calculi: Invertibility, Axiom Expansion and (Non)-determinism , 2009, CSR.

[15]  A. Avron,et al.  NON-DETERMINISTIC SEMANTICS FOR LOGICAL SYSTEMS , 2011 .