SERS detection of small inorganic molecules and ions.

Surface-enhanced Raman scattering (SERS) is one of the most straightforward applications of the so-called nanoplasmonics. This powerful molecular spectroscopy technique is based on the enhancement of the inelastic scattering from molecules located near nanostructured metallic surfaces when these are illuminated and surface plasmons are excited. The analytical applications of SERS are hindered when the Raman cross-section of the analyte is too low, which is often the case in inorganic molecular species. This problem is even more serious when atomic species are to be identified, since these cannot display a vibrational signal. Herein we discuss the recent advancements toward the SERS detection of small inorganic compounds, including both molecular and atomic species.

[1]  Henry Du,et al.  Substrates with discretely immobilized silver nanoparticles for ultrasensitive detection of anions in water using surface-enhanced Raman scattering. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[2]  F. Albert Cotton,et al.  Advanced Inorganic Chemistry , 1999 .

[3]  M. J. Weaver,et al.  Metal-adsorbate vibrational frequencies as a probe of surface bonding: halides and pseudohalides at gold electrodes , 1986 .

[4]  Ya-xian Yuan,et al.  Surface enhanced Raman spectroscopic readout on heavy metal ions based on surface self assembly , 2007 .

[5]  R. A. Timm,et al.  Ultrasensitive SERS nanoprobes for hazardous metal ions based on trimercaptotriazine-modified gold nanoparticles. , 2008, Inorganic chemistry.

[6]  Jun Feng Zhang,et al.  Plasmonic-coupling-based sensing by the assembly and disassembly of dipycolylamine-tagged gold nanoparticles induced by complexing with cations and anions. , 2012, Small.

[7]  Luis M. Liz-Marzán,et al.  Environmental applications of plasmon assisted Raman scattering , 2010 .

[8]  Andreas Otto,et al.  The ‘chemical’ (electronic) contribution to surface‐enhanced Raman scattering , 2005 .

[9]  L. Liz‐Marzán,et al.  Optical Sensing of Small Ions with Colloidal Nanoparticles , 2012 .

[10]  J. Zhan,et al.  A colorimetric and surface-enhanced Raman scattering dual-signal sensor for Hg2+ based on Bismuthiol II-capped gold nanoparticles. , 2012, Analytica chimica acta.

[11]  R. Singh,et al.  Suppressed ion chromatographic analysis of anions in environmental waters containing high salt concentrations , 1996 .

[12]  O. Siiman,et al.  Surface Raman excitation and enhancement profiles for chromate, molybdate, and tungstate on colloidal silver , 1986 .

[13]  Jaebum Choo,et al.  Selective Trace Analysis of Mercury (II) Ions in Aqueous Media Using SERS-Based Aptamer Sensor , 2011 .

[14]  Andrew J. deMello,et al.  Surface-enhanced Raman scattering in nanoliter droplets: towards high-sensitivity detection of mercury (II) ions , 2009, Analytical and bioanalytical chemistry.

[15]  M. Moskovits Surface‐enhanced Raman spectroscopy: a brief retrospective , 2005 .

[16]  C. Ruan,et al.  Determination of technetium and its speciation by surface-enhanced Raman spectroscopy. , 2007, Analytical chemistry.

[17]  Surface-enhanced Raman spectra and gas chemisorption of Langmuir-Blodgett layers of lutetium and ytterbium diphthalocyanines , 1992 .

[18]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[19]  C. Lodeiro,et al.  Luminescent and chromogenic molecular probes based on polyamines and related compounds , 2009 .

[20]  A. Riedinger,et al.  Ratiometric optical sensing of chloride ions with organic fluorophore-gold nanoparticle hybrids: a systematic study of design parameters and surface charge effects. , 2010, Small.

[21]  B. R. Johnson,et al.  All-optical nanoscale pH meter. , 2006, Nano letters.

[22]  Pietro Luigi Cavallotti,et al.  Template assisted deposition of Ag nanoparticle arrays for surface-enhanced Raman scattering applications , 2007 .

[23]  H. Gerischer,et al.  Surface-enhanced raman scattering from silver-cyanide and silver-thiocyanate vibrations and the importance of adatoms , 1981 .

[24]  Marco Zanella,et al.  Biological applications of gold nanoparticles. , 2008, Chemical Society reviews.

[25]  A. Otto,et al.  Charge transfer between adsorbed cyanide and silver probed by SERS , 1984 .

[26]  Paresh Chandra Ray,et al.  Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: selective detection of arsenic in groundwater. , 2009, Angewandte Chemie.

[27]  Martin Moskovits,et al.  Visualizing chromatographic separation of metal ions on a surface-enhanced Raman active medium. , 2011, Nano letters.

[28]  Lingxin Chen,et al.  Highly sensitive SERS detection of As3+ ions in aqueous media using glutathione functionalized silver nanoparticles. , 2011, ACS applied materials & interfaces.

[29]  L. Liz‐Marzán,et al.  Light concentration at the nanometer scale , 2010 .

[30]  R. McCreery Magnitude of Raman Scattering , 2005 .

[31]  Wei Wang,et al.  Surface-enhanced Raman scattering for perchlorate detection using cystamine-modified gold nanoparticles. , 2006, Analytica chimica acta.

[32]  L. Liz‐Marzán,et al.  SERS-based diagnosis and biodetection. , 2010, Small.

[33]  Dorothea K. Thompson,et al.  Raman chemical imaging of chromate reduction sites in a single bacterium using intracellularly grown gold nanoislands. , 2011, ACS nano.

[34]  P. S. Vincett,et al.  Distance dependence of SERS enhancement factor from Langmuir-Blodgett monolayers on metal island films: evidence for the electromagnetic mechanism , 1986 .

[35]  A. Zarębski Catalytic Adsorptive Stripping Voltammetry at Film Electrodes , 2008 .

[36]  N. Shah,et al.  Surface-enhanced Raman spectroscopy. , 2008, Annual review of analytical chemistry.

[37]  Tuan Vo-Dinh,et al.  Plasmonic nanoprobes for SERS biosensing and bioimaging , 2009, Journal of biophotonics.

[38]  D. Nesbitt,et al.  Kinetic Studies of the Photogeneration of Silver Nanoparticles , 2011 .

[39]  Matthew M. Rex,et al.  Pushing the limits of mercury sensors with gold nanorods. , 2006, Analytical chemistry.

[40]  S. Joo Te ? Te cleavage of aromatic ditellurides on silver and gold surfaces , 2006 .

[41]  Alexander Wei,et al.  Dithiocarbamate-coated SERS substrates: sensitivity gain by partial surface passivation. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[42]  Luis M Liz-Marzán,et al.  Label-free SERS detection of relevant bioanalytes on silver-coated carbon nanotubes: The case of cocaine. , 2009, Nanoscale.

[43]  Scott T Retterer,et al.  Characterization and detection of uranyl ion sorption on silver surfaces using surface enhanced Raman spectroscopy. , 2009, Analytical chemistry.

[44]  Adriano Zecchina,et al.  Role of exposed metal sites in hydrogen storage in MOFs. , 2008, Journal of the American Chemical Society.

[45]  P. A. Mosier-Boss,et al.  Detection of Anions by Normal Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy of Cationic-Coated Substrates , 2003, Applied spectroscopy.

[46]  N. Pieczonka,et al.  Inherent complexities of trace detection by surface-enhanced Raman scattering. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[47]  Duncan Graham,et al.  Importance of nanoparticle size in colorimetric and SERS-based multimodal trace detection of Ni(II) ions with functional gold nanoparticles. , 2012, Small.

[48]  M. Grzelczak,et al.  Influence of Iodide Ions on the Growth of Gold Nanorods: Tuning Tip Curvature and Surface Plasmon Resonance , 2008 .

[49]  Logan K. Ausman,et al.  Methods for describing the electromagnetic properties of silver and gold nanoparticles. , 2008, Accounts of chemical research.

[50]  A. Pucci,et al.  SERS of CO2 on Cold-Deposited Cu: An Electronic Effect at a Minority of Surface Sites⊥ , 2008 .

[51]  Richard L. McCreery,et al.  Raman Spectroscopy for Chemical Analysis , 2000 .

[52]  T. Pal,et al.  Selective and sensitive recognition of Cu2+ in an aqueous medium: a surface-enhanced Raman scattering (SERS)-based analysis with a low-cost Raman reporter. , 2012, Chemistry.

[53]  L. Liz‐Marzán,et al.  Bifunctional Nanocomposites with Long-Term Stability as SERS Optical Accumulators for Ultrasensitive Analysis , 2009 .

[54]  G. Wicks,et al.  Nuclear waste management IV , 1991 .

[55]  Sarit S. Agasti,et al.  Gold nanoparticles in chemical and biological sensing. , 2012, Chemical reviews.

[56]  Imran Khan,et al.  Surface enhanced Raman spectroscopy (SERS) sensors for gas analysis. , 2010, The Analyst.

[57]  Meikun Fan,et al.  A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. , 2011, Analytica chimica acta.

[58]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[59]  M. Natan,et al.  Surface-enhanced Raman spectroscopy and homeland security: a perfect match? , 2009, ACS nano.

[60]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[61]  Peidong Yang,et al.  Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water. , 2008, Angewandte Chemie.

[62]  Jung-Hyun Lee,et al.  Facile preparation of highly-scattering metal nanoparticle-coated polymer microbeads and their surface plasmon resonance. , 2009, Journal of the American Chemical Society.

[63]  Joseph Irudayaraj,et al.  A SERS DNAzyme biosensor for lead ion detection. , 2011, Chemical communications.

[64]  P. Vikesland,et al.  Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. , 2010, Environmental science & technology.

[65]  C. Haynes,et al.  Detection of a foreign protein in milk using surface-enhanced Raman spectroscopy coupled with antibody-modified silver dendrites. , 2011, Analytical chemistry.

[66]  M. J. Weaver,et al.  Extending surface-enhanced Raman spectroscopy to transition-metal surfaces: carbon monoxide adsorption and electrooxidation on platinum- and palladium-coated gold electrodes , 1987 .

[67]  T. Uemura,et al.  Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. , 2011, Nature materials.

[68]  L. Liz‐Marzán,et al.  Quantitative surface-enhanced Raman scattering ultradetection of atomic inorganic ions: the case of chloride. , 2011, ACS nano.

[69]  C. Ruan,et al.  Perchlorate Detection at Nanomolar Concentrations by Surface-Enhanced Raman Scattering , 2009, Applied spectroscopy.

[70]  S. Bell,et al.  Surface-enhanced Raman spectroscopy as a probe of competitive binding by anions to citrate-reduced silver colloids. , 2005, The journal of physical chemistry. A.

[71]  Xiaoguang Meng,et al.  Surface-enhanced Raman scattering for arsenate detection on multilayer silver nanofilms. , 2011, Analytica chimica acta.

[72]  Jibin Song,et al.  SERS-Active Nanoparticles for Sensitive and Selective Detection of Cadmium Ion (Cd2+) , 2011 .

[73]  Martin Moskovits,et al.  Aptamer-mediated surface-enhanced Raman spectroscopy intensity amplification. , 2010, Nano letters.

[74]  B. Pejcic,et al.  Ion-Selective Electrode Potentiometry in Environmental Analysis , 2007 .

[75]  R. H. Clark,et al.  Resonanz-Raman-Spektroskopie und ihre Anwendung in der Anorganischen Chemie , 1986 .

[76]  K. Kneipp,et al.  One- and two-photon excited optical ph probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. , 2007, Nano letters.

[77]  K. Sada,et al.  SERS-Active Metal–Organic Frameworks Embedding Gold Nanorods , 2011 .

[78]  S. Dai,et al.  Silver-doped sol-gel film as a surface-enhanced Raman scattering substrate for detection of uranyl and neptunyl ions. , 2003, Analytical chemistry.

[79]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[80]  Katrin Kneipp,et al.  Surface-enhanced Raman scattering , 2006 .

[81]  R. Clark,et al.  Resonance Raman Spectroscopy, and Its Application to Inorganic Chemistry. New Analytical Methods (27) , 1986 .

[82]  Martin Moskovits,et al.  Mapping local pH in live cells using encapsulated fluorescent SERS nanotags. , 2010, Small.

[83]  M. Moskovits Spectroscopy: Expanding versatility , 2010, Nature.