Rate-Dependent Morphology of Li2O2 Growth in Li-O2 Batteries.

Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter, we develop a nanoscale continuum model for the growth of Li2O2 crystals in lithium-oxygen batteries with organic electrolytes, based on a theory of electrochemical nonequilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium insertion in phase-separating LiFePO4 nanoparticles, the theory predicts a transition from complex to uniform morphologies of Li2O2 with increasing current. Discrete particle growth at low discharge rates becomes suppressed at high rates, resulting in a film of electronically insulating Li2O2 that limits cell performance. We predict that the transition between these surface growth modes occurs at current densities close to the exchange current density of the cathode reaction, consistent with experimental observations.

[1]  George C. Schatz,et al.  The journal of physical chemistry letters , 2009 .

[2]  Petru Andrei,et al.  Some Possible Approaches for Improving the Energy Density of Li-air Batteries , 2010 .

[3]  Daniel A. Cogswell,et al.  Theory of coherent nucleation in phase-separating nanoparticles. , 2013, Nano letters.

[4]  Yang Shao-Horn,et al.  Mechanisms of Morphological Evolution of Li2O2 Particles during Electrochemical Growth. , 2013, The journal of physical chemistry letters.

[5]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[6]  Donald J. Siegel,et al.  Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. , 2012, Journal of the American Chemical Society.

[7]  Daniel A. Cogswell,et al.  Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. , 2011, ACS nano.

[8]  Linda F. Nazar,et al.  Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. , 2012, Journal of the American Chemical Society.

[9]  Charles W. Monroe,et al.  Dendrite Growth in Lithium/Polymer Systems A Propagation Model for Liquid Electrolytes under Galvanostatic Conditions , 2003 .

[10]  Martin Z. Bazant,et al.  Current-Voltage Relations for Electrochemical Thin Films , 2005, SIAM J. Appl. Math..

[11]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[12]  J. Nørskov,et al.  Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery. , 2010, The Journal of chemical physics.

[13]  Yang Shao-Horn,et al.  Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li–O2 batteries , 2013 .

[14]  H. Stone,et al.  Continuum approach to self-similarity and scaling in morphological relaxation of a crystal with a facet , 2005 .

[15]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[16]  F. S. Prout Philosophical Transactions of the Royal Society of London , 2009, The London Medical Journal.

[17]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[18]  Yang Shao-Horn,et al.  The discharge rate capability of rechargeable Li–O2 batteries , 2011 .

[19]  Yang Shao-Horn,et al.  Probing the Reaction Kinetics of the Charge Reactions of Nonaqueous Li-O2 Batteries. , 2013, The journal of physical chemistry letters.

[20]  J. Warren,et al.  Growth and form of spherulites. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Yang Shao-Horn,et al.  Lithium–oxygen batteries: bridging mechanistic understanding and battery performance , 2013 .

[22]  Ji-Guang Zhang,et al.  Air electrode design for sustained high power operation of Li/air batteries , 2009 .

[23]  J. Nørskov,et al.  Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry. , 2013, The Journal of chemical physics.

[24]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[25]  M. Rosso Electrodeposition from a binary electrolyte: new developments and applications , 2007 .

[26]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[27]  Yang Shao-Horn,et al.  Chemical and Morphological Changes of Li–O2 Battery Electrodes upon Cycling , 2012 .

[28]  A. Kuhn,et al.  REVISITED EXPERIMENTAL-ANALYSIS OF MORPHOLOGICAL-CHANGES IN THIN-LAYER ELECTRODEPOSITION , 1994 .

[29]  J. Tu,et al.  Electrodeposited Growth Habit and Growth Mechanism of ZnO as Anode Material of Secondary Alkaline Zn Battery , 2006 .

[30]  A. Barabasi,et al.  Fractal concepts in surface growth , 1995 .

[31]  Tanabe Shinichi,et al.  SiC(0001)上のグラフェンのキャリア輸送メカニズム , 2011 .

[32]  W. K. Burton,et al.  The growth of crystals and the equilibrium structure of their surfaces , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[33]  A. Barabasi,et al.  Fractal Concepts in Surface Growth: Frontmatter , 1995 .

[34]  W. Bessler,et al.  Precipitation in aqueous lithium–oxygen batteries: a model-based analysis , 2013 .

[35]  Daniel A. Cogswell,et al.  Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge. , 2011, Nano letters.

[36]  J. Nørskov,et al.  Li-O2 Kinetic Overpotentials: Tafel Plots from Experiment and First-Principles Theory. , 2013, The journal of physical chemistry letters.

[37]  Shigeta Hara,et al.  Combined in situ EC-AFM and CV measurement study on lead electrode for lead–acid batteries , 2001 .

[38]  Boris Kozinsky,et al.  Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling , 2011 .

[39]  Martin Z. Bazant,et al.  Nonequilibrium Thermodynamics of Porous Electrodes , 2012, 1204.2934.

[40]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[41]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[42]  Damian Burch,et al.  Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. , 2009, Nano letters.

[43]  Chang Woo Lee,et al.  Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives , 2006 .

[44]  Martin Z. Bazant,et al.  Imposed currents in galvanic cells , 2009 .

[45]  S. S. Sandhu,et al.  Diffusion-limited model for a lithium/air battery with an organic electrolyte , 2007 .

[46]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[47]  Wolfgang G. Bessler,et al.  A Flexible Framework for Modeling Multiple Solid, Liquid and Gaseous Phases in Batteries and Fuel Cells , 2012 .

[48]  Jasim Ahmed,et al.  A Critical Review of Li/Air Batteries , 2011 .

[49]  Martin Z Bazant,et al.  Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. , 2012, Accounts of chemical research.

[50]  David R. Ely,et al.  Heterogeneous Nucleation and Growth of Lithium Electrodeposits on Negative Electrodes , 2013 .

[51]  Betar M. Gallant,et al.  All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries , 2011 .

[52]  J. Nørskov,et al.  Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. , 2012, The journal of physical chemistry letters.

[53]  Linda F. Nazar,et al.  Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge , 2013 .

[54]  Donald J. Siegel,et al.  Electronic structure of Li2O2 {0001} surfaces , 2012, Journal of Materials Science.

[55]  T. Homma,et al.  In Situ Observation of Dendrite Growth of Electrodeposited Li Metal , 2010 .

[56]  J. Nørskov,et al.  Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. , 2011, The Journal of chemical physics.