Introduction of the PCM Flux Concept for Latent Heat Storage

Abstract The focus in the development of storage systems using phase change materials is on the implementation of heat transfer concepts compensating the limited heat conductivity of the storage materials. This paper introduces the PCM Flux concept as a new alternative for latent heat energy storage. Here, the storage material is separated mechanically by an intermediate fluid layer from the heat transfer surfaces. This approach avoids the formation of a growing layer of solidified storage material covering the heat transfer structure, which limits the heat flux. This paper outlines the PCM Flux concept and gives results of its theoretical analysis.

[1]  M. J. Wheeler Heat and Mass Transfer , 1968, Nature.

[2]  Peter Schossig,et al.  Micro-encapsulated paraffin in phase-change slurries , 2005 .

[3]  Mónica Delgado,et al.  Review on phase change material emulsions and microencapsulated phase change material slurries: Materials, heat transfer studies and applications , 2012 .

[4]  T. Bauer,et al.  An experimental study of a non-eutectic mixture of KNO3 and NaNO3 with a melting range for thermal energy storage , 2013 .

[5]  Werner Platzer,et al.  High temperature latent heat storage with a screw heat exchanger: Design of prototype , 2013 .

[6]  L. Cabeza,et al.  Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems , 2009 .

[7]  M. Epstein,et al.  Heat transfer efficient thermal energy storage for steam generation , 2010 .

[8]  Amir Faghri,et al.  Heat transfer and exergy analysis of cascaded latent heat storage with gravity-assisted heat pipes for concentrating solar power applications , 2012 .

[9]  F. Bruno,et al.  Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems , 2012 .

[10]  T. Bauer,et al.  Thermal energy storage for direct steam generation , 2011 .

[11]  C. Doetsch,et al.  Evaluation of paraffin/water emulsion as a phase change slurry for cooling applications , 2009 .

[12]  H. P. Garg,et al.  Solar Thermal Energy Storage , 1985 .

[13]  T. L. Bergman,et al.  High temperature latent heat thermal energy storage using heat pipes , 2010 .

[14]  A. Mathur Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants , 2013 .

[15]  L. Cabeza,et al.  Heat and cold storage with PCM: An up to date introduction into basics and applications , 2008 .

[16]  Markus Eck,et al.  High Temperature PCM Storage for DSG Solar Thermal Power Plants Tested in Various Operating Modes of Water/Steam Flow , 2012 .

[17]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[18]  A. D. Solomon,et al.  Mathematical Modeling Of Melting And Freezing Processes , 1992 .

[19]  Rui Yang,et al.  Preparation, physical property and thermal physical property of phase change microcapsule slurry and phase change emulsion☆ , 2003 .

[20]  Rainer Tamme,et al.  PCM-Graphite Composites for High Temperature Thermal Energy Storage , 2006 .

[21]  A. Sari,et al.  Thermal Performance of a Eutectic Mixture of Lauric and Stearic Acids as PCM Encapsulated in the Annulus of Two Concentric Pipes , 2002 .

[22]  A. Bejan,et al.  Thermal Energy Storage: Systems and Applications , 2002 .