Perceptual and Physiological Consequences of Dark Adaptation: A TMS-EEG Study

[1]  Christoph Zrenner,et al.  Comparison of cortical EEG responses to realistic sham versus real TMS of human motor cortex , 2018, Brain Stimulation.

[2]  Hartwig R. Siebner,et al.  The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies , 2018, NeuroImage.

[3]  Jochen Triesch,et al.  EEG-triggered TMS reveals stronger brain state-dependent modulation of motor evoked potentials at weaker stimulation intensities , 2018, Brain Stimulation.

[4]  Mark P. Richardson,et al.  The Effect of Lamotrigine and Levetiracetam on TMS-Evoked EEG Responses Depends on Stimulation Intensity , 2017, Front. Neurosci..

[5]  A. Sack,et al.  Seeing in the dark: Phosphene thresholds with eyes open versus closed in the absence of visual inputs , 2017, Brain Stimulation.

[6]  M. Ruzzoli,et al.  Reliability of TMS phosphene threshold estimation: Toward a standardized protocol , 2017, Brain Stimulation.

[7]  Hans-Jochen Heinze,et al.  Richness in Functional Connectivity Depends on the Neuronal Integrity within the Posterior Cingulate Cortex , 2017, Front. Neurosci..

[8]  Giacomo Koch,et al.  Ongoing cumulative effects of single TMS pulses on corticospinal excitability: An intra- and inter-block investigation , 2016, Clinical Neurophysiology.

[9]  O. Jensen,et al.  University of Birmingham Attention Modulates TMS-Locked Alpha Oscillations in the Visual Cortex , 2015 .

[10]  S. Savazzi,et al.  Waves of awareness for occipital and parietal phosphenes perception , 2015, Neuropsychologia.

[11]  Vincenza Tarantino,et al.  Low-frequency rTMS inhibitory effects in the primary motor cortex: Insights from TMS-evoked potentials , 2014, NeuroImage.

[12]  R. Šikl,et al.  Spared cognitive processing of visual oddballs despite delayed visual evoked potentials in patient with partial recovery of vision after 53years of blindness , 2013, Vision Research.

[13]  Debora Brignani,et al.  Combining Transcranial Electrical Stimulation With Electroencephalography , 2012, Clinical EEG and neuroscience.

[14]  Justin A. Harris,et al.  Accurate and Rapid Estimation of Phosphene Thresholds (REPT) , 2011, PloS one.

[15]  B. Mulsant,et al.  The Role of the Corpus Callosum in Transcranial Magnetic Stimulation Induced Interhemispheric Signal Propagation , 2010, Biological Psychiatry.

[16]  Martin Eimer,et al.  The neural signature of phosphene perception , 2010, Human brain mapping.

[17]  Andrea Pigorini,et al.  EEG Responses to TMS Are Sensitive to Changes in the Perturbation Parameters and Repeatable over Time , 2010, PloS one.

[18]  S. Rossi,et al.  Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research , 2009, Clinical Neurophysiology.

[19]  M. Massimini,et al.  Natural Frequencies of Human Corticothalamic Circuits , 2009, The Journal of Neuroscience.

[20]  C. Miniussi,et al.  New insights into rhythmic brain activity from TMS–EEG studies , 2009, Trends in Cognitive Sciences.

[21]  Jyrki P. Mäkelä,et al.  Reproducibility of TMS—Evoked EEG responses , 2009, Human brain mapping.

[22]  Á. Pascual-Leone,et al.  Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. , 2008, Cerebral cortex.

[23]  John C. Rothwell,et al.  State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation , 2008, Brain Stimulation.

[24]  Lotfi B Merabet,et al.  Time-dependent changes in cortical excitability after prolonged visual deprivation , 2007, Neuroreport.

[25]  Seppo Kähkönen,et al.  The novelty value of the combined use of electroencephalography and transcranial magnetic stimulation for neuroscience research , 2006, Brain Research Reviews.

[26]  Á. Pascual-Leone,et al.  Modulatory effects of low‐ and high‐frequency repetitive transcranial magnetic stimulation on visual cortex of healthy subjects undergoing light deprivation , 2005, The Journal of physiology.

[27]  R. J. Ilmoniemi,et al.  Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans , 2005, NeuroImage.

[28]  David R. Anderson,et al.  Multimodel Inference , 2004 .

[29]  Alvaro Pascual-Leone,et al.  Behavioral and neuroplastic changes in the blind: evidence for functionally relevant cross-modal interactions , 2004, Journal of Physiology-Paris.

[30]  Seppo Kähkönen,et al.  The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation , 2004, Human brain mapping.

[31]  Carl J. Walters,et al.  Ecopath with Ecosim: methods, capabilities and limitations , 2004 .

[32]  S. Jørgensen Model Selection and Multimodel Inference: A Practical Information—Theoretic Approach, Second Edition, Kenneth P. Brunham, David R. Anderson, Springer-Verlag, Heidelberg, 2002, 490 pages, hardbound, 31 illustrations , 2004 .

[33]  M. Peruggia Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed.) , 2003 .

[34]  Lotfi B Merabet,et al.  Transcranial Magnetic Stimulation as an Investigative Tool in the Study of Visual Function , 2003, Optometry and vision science : official publication of the American Academy of Optometry.

[35]  Diane Ruge,et al.  Short‐interval paired‐pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity , 2002, The Journal of physiology.

[36]  Bernhard A. Sabel,et al.  Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation. , 2002, Brain : a journal of neurology.

[37]  L. Cohen,et al.  Mechanisms underlying rapid experience-dependent plasticity in the human visual cortex , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  M. Erb,et al.  The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation , 2001, Clinical Neurophysiology.

[39]  L. Cohen,et al.  Enhanced excitability of the human visual cortex induced by short-term light deprivation. , 2000, Cerebral cortex.

[40]  V. Nikouline,et al.  The role of the coil click in TMS assessed with simultaneous EEG , 1999, Clinical Neurophysiology.

[41]  Jonathan D. Cohen,et al.  Functional topographic mapping of the cortical ribbon in human vision with conventional MRI scanners , 1993, Nature.

[42]  T. Wiesel,et al.  Receptive field dynamics in adult primary visual cortex , 1992, Nature.

[43]  J. D. Glass,et al.  Visually evoked potentials from occipital and precentral cortex in visually deprived humans. , 1977, Electroencephalography and clinical neurophysiology.

[44]  G. Marjerrison,et al.  Electroencephalographic Changes during Brief Periods of Perceptual Deprivation , 1967, Perceptual and motor skills.

[45]  Zafiris J Daskalakis,et al.  Mechanisms underlying long-interval cortical inhibition in the human motor cortex: a TMS-EEG study. , 2013, Journal of neurophysiology.

[46]  C. Miniussi,et al.  Combining TMS and EEG Offers New Prospects in Cognitive Neuroscience , 2009, Brain Topography.

[47]  Andrea Fossati,et al.  Reliability and validity of the Italian version of the Temperament and Character Inventory-Revised in an outpatient sample. , 2007, Comprehensive psychiatry.

[48]  A. Parker,et al.  Sense and the single neuron: probing the physiology of perception. , 1998, Annual review of neuroscience.

[49]  C. R. Cloninger,et al.  The temperament and character inventory (TCI) : a guide to its development and use , 1994 .