Divergent structures of Mammalian and gammaherpesvirus uracil DNA glycosylases confer distinct DNA binding and substrate activity.

[1]  S. Elledge,et al.  Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis , 2022, Science.

[2]  D. Durocher,et al.  FAM72A antagonizes UNG2 to promote mutagenic repair during antibody maturation , 2021, Nature.

[3]  K. Tarte,et al.  Fam72a enforces error-prone DNA repair during antibody diversification , 2021, Nature.

[4]  L. T. Krug,et al.  Conquering the Host: Determinants of Pathogenesis Learned from Murine Gammaherpesvirus 68 , 2021, Annual review of virology.

[5]  D. Morgens,et al.  A Two-tiered functional screen identifies herpesviral transcriptional modifiers and their essential domains , 2021, bioRxiv.

[6]  J. Walter,et al.  Mechanisms of Vertebrate DNA Interstrand Cross-Link Repair. , 2021, Annual review of biochemistry.

[7]  N. Liabakk,et al.  RPA2 winged-helix domain facilitates UNG-mediated removal of uracil from ssDNA; implications for repair of mutagenic uracil at the replication fork , 2021, Nucleic acids research.

[8]  Linlin Zhao,et al.  The N-terminal domain of uracil-DNA glycosylase: Roles for disordered regions. , 2021, DNA repair.

[9]  K. Gates,et al.  Formation and repair of unavoidable, endogenous interstrand cross-links in cellular DNA. , 2020, DNA repair.

[10]  N. Johnson,et al.  The uracil-DNA glycosylase UNG protects the fitness of normal and cancer B cells expressing AID , 2020, NAR cancer.

[11]  M. Zelazowska,et al.  Dangerous Liaisons: Gammaherpesvirus Subversion of the Immunoglobulin Repertoire , 2020, Viruses.

[12]  D. Cortez,et al.  New insights into abasic site repair and tolerance. , 2020, DNA repair.

[13]  R. Savva The Essential Co-Option of Uracil-DNA Glycosylases by Herpesviruses Invites Novel Antiviral Design , 2020, Microorganisms.

[14]  R. Savva Targeting uracil-DNA glycosylases for therapeutic outcomes using insights from virus evolution. , 2019, Future medicinal chemistry.

[15]  N. Liabakk,et al.  Uracil–DNA glycosylase UNG1 isoform variant supports class switch recombination and repairs nuclear genomic uracil , 2019, Nucleic acids research.

[16]  M. Shapiro,et al.  Combinatorial Loss of the Enzymatic Activities of Viral Uracil-DNA Glycosylase and Viral dUTPase Impairs Murine Gammaherpesvirus Pathogenesis and Leads to Increased Recombination-Based Deletion in the Viral Genome , 2018, mBio.

[17]  J. Greenblatt,et al.  Epstein-Barr virus BORF2 inhibits cellular APOBEC3B to preserve viral genome integrity , 2018, Nature Microbiology.

[18]  Wei Yang,et al.  Translesion and Repair DNA Polymerases: Diverse Structure and Mechanism. , 2018, Annual review of biochemistry.

[19]  P. Cole,et al.  N-terminal domain of human uracil DNA glycosylase (hUNG2) promotes targeting to uracil sites adjacent to ssDNA–dsDNA junctions , 2018, Nucleic acids research.

[20]  R. Savva,et al.  A structurally conserved motif in γ-herpesvirus uracil-DNA glycosylases elicits duplex nucleotide-flipping , 2018, Nucleic acids research.

[21]  P. Cole,et al.  Disordered N-Terminal Domain of Human Uracil DNA Glycosylase (hUNG2) Enhances DNA Translocation. , 2017, ACS chemical biology.

[22]  M. Luftig,et al.  Limited nucleotide pools restrict Epstein–Barr virus-mediated B-cell immortalization , 2017, Oncogenesis.

[23]  J. Stivers,et al.  AP-Endonuclease 1 Accelerates Turnover of Human 8-Oxoguanine DNA Glycosylase by Preventing Retrograde Binding to the Abasic-Site Product. , 2017, Biochemistry.

[24]  Kristen M Varney,et al.  Structural basis of damage recognition by thymine DNA glycosylase: Key roles for N-terminal residues , 2016, Nucleic acids research.

[25]  O. Schärer,et al.  Involvement of translesion synthesis DNA polymerases in DNA interstrand crosslink repair. , 2016, DNA repair.

[26]  P. O'Brien,et al.  Base excision repair enzymes protect abasic sites in duplex DNA from interstrand cross-links. , 2015, Biochemistry.

[27]  Kevin M. McBride,et al.  Absence of the Uracil DNA Glycosylase of Murine Gammaherpesvirus 68 Impairs Replication and Delays the Establishment of Latency In Vivo , 2015, Journal of Virology.

[28]  Alberto Martin,et al.  Genomic Uracil Homeostasis during Normal B Cell Maturation and Loss of This Balance during B Cell Cancer Development , 2014, Molecular and Cellular Biology.

[29]  P. Sætrom,et al.  Error-free versus mutagenic processing of genomic uracil--relevance to cancer. , 2014, DNA repair.

[30]  Chung-Pei Lee,et al.  Uracil DNA Glycosylase BKRF3 Contributes to Epstein-Barr Virus DNA Replication through Physical Interactions with Proteins in Viral DNA Replication Complex , 2014, Journal of Virology.

[31]  Elena Bekerman,et al.  A Role for Host Activation-Induced Cytidine Deaminase in Innate Immune Defense against KSHV , 2013, PLoS pathogens.

[32]  N. Oezguen,et al.  The disordered C-terminal domain of human DNA glycosylase NEIL1 contributes to its stability via intramolecular interactions. , 2013, Journal of molecular biology.

[33]  M. Bjørås,et al.  Base excision repair. , 2013, Cold Spring Harbor perspectives in biology.

[34]  E. Toth,et al.  Crystal structure of human methyl-binding domain IV glycosylase bound to abasic DNA. , 2012, Journal of molecular biology.

[35]  Megan E. Fitzgerald,et al.  Stoichiometry and affinity for thymine DNA glycosylase binding to specific and nonspecific DNA , 2010, Nucleic acids research.

[36]  Samuel H. Wilson,et al.  Substrate Channeling in Mammalian Base Excision Repair Pathways: Passing the Baton* , 2010, The Journal of Biological Chemistry.

[37]  S. Mitra,et al.  Functions of disordered regions in mammalian early base excision repair proteins , 2010, Cellular and Molecular Life Sciences.

[38]  P. Boehmer,et al.  Association between the Herpes Simplex Virus-1 DNA Polymerase and Uracil DNA Glycosylase*♦ , 2010, The Journal of Biological Chemistry.

[39]  M. Otterlei,et al.  Uracil in DNA and its processing by different DNA glycosylases , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[40]  H. Rollag,et al.  Characterization of human cytomegalovirus uracil DNA glycosylase (UL114) and its interaction with polymerase processivity factor (UL44). , 2008, Journal of molecular biology.

[41]  Arnaud Leroy,et al.  The thymine-DNA glycosylase regulatory domain: residual structure and DNA binding. , 2008, Biochemistry.

[42]  Sergio Roa,et al.  The biochemistry of somatic hypermutation. , 2008, Annual review of immunology.

[43]  C. E. Schrader,et al.  Mechanism and regulation of class switch recombination. , 2008, Annual review of immunology.

[44]  M. Neuberger,et al.  Molecular mechanisms of antibody somatic hypermutation. , 2007, Annual review of biochemistry.

[45]  H. Krokan,et al.  Uracil–DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms , 2007, Nucleic acids research.

[46]  M. Buisson,et al.  New insights on the role of the gamma-herpesvirus uracil-DNA glycosylase leucine loop revealed by the structure of the Epstein-Barr virus enzyme in complex with an inhibitor protein. , 2007, Journal of molecular biology.

[47]  Chung-Pei Lee,et al.  Characterization of the Uracil-DNA Glycosylase Activity of Epstein-Barr Virus BKRF3 and Its Role in Lytic Viral DNA Replication , 2006, Journal of Virology.

[48]  S. Verma,et al.  Latency-Associated Nuclear Antigen of Kaposi's Sarcoma-Associated Herpesvirus Recruits Uracil DNA Glycosylase 2 at the Terminal Repeats and Is Important for Latent Persistence of the Virus , 2006, Journal of Virology.

[49]  J. Hess,et al.  Murine Gammaherpesvirus 68 Infection Is Associated with Lymphoproliferative Disease and Lymphoma in BALB β2 Microglobulin-Deficient Mice , 2005, Journal of Virology.

[50]  E. Carpenter,et al.  A Comparative Study of Uracil-DNA Glycosylases from Human and Herpes Simplex Virus Type 1* , 2005, Journal of Biological Chemistry.

[51]  S. Cusack,et al.  The monomeric dUTPase from Epstein-Barr virus mimics trimeric dUTPases. , 2005, Structure.

[52]  Cheng-Yao Chen,et al.  Mutations at Arginine 276 transform human uracil-DNA glycosylase into a single-stranded DNA-specific uracil-DNA glycosylase. , 2005, DNA repair.

[53]  Robert E. Johnson,et al.  Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. , 2005, Annual review of biochemistry.

[54]  Cheng-Yao Chen,et al.  Mutational Analysis of Arginine 276 in the Leucine-loop of Human Uracil-DNA Glycosylase* , 2004, Journal of Biological Chemistry.

[55]  G. Dianov,et al.  Repair of abasic sites in DNA. , 2003, Mutation research.

[56]  F. Skorpen,et al.  hUNG2 Is the Major Repair Enzyme for Removal of Uracil from U:A Matches, U:G Mismatches, and U in Single-stranded DNA, with hSMUG1 as a Broad Specificity Backup* , 2002, The Journal of Biological Chemistry.

[57]  J. Courcelle,et al.  Requirement for Uracil-DNA Glycosylase during the Transition to Late-Phase Cytomegalovirus DNA Replication , 2001, Journal of Virology.

[58]  I. Hickson,et al.  Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step. , 2001, Nucleic acids research.

[59]  C. Ingles,et al.  Structural Basis for the Recognition of DNA Repair Proteins UNG2, XPA, and RAD52 by Replication Factor RPA , 2000, Cell.

[60]  A. Bellacosa,et al.  Biphasic Kinetics of the Human DNA Repair Protein MED1 (MBD4), a Mismatch-specific DNA N-Glycosylase* , 2000, The Journal of Biological Chemistry.

[61]  H. Noller,et al.  Functional sites of interaction between release factor RF1 and the ribosome , 2000, Nature Structural Biology.

[62]  A. Bird,et al.  The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites , 1999, Nature.

[63]  J. Jiricny,et al.  Human Thymine DNA Glycosylase Binds to Apurinic Sites in DNA but Is Displaced by Human Apurinic Endonuclease 1* , 1999, The Journal of Biological Chemistry.

[64]  B. Demple,et al.  Dynamics of the Interaction of Human Apurinic Endonuclease (Ape1) with Its Substrate and Product* , 1998, The Journal of Biological Chemistry.

[65]  J. Tainer,et al.  Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil‐DNA glycosylase with DNA , 1998, The EMBO journal.

[66]  A. Nash,et al.  Lymphoproliferative disease in mice infected with murine gammaherpesvirus 68. , 1994, The American journal of pathology.

[67]  R. L. Thompson,et al.  Evidence that the herpes simplex virus type 1 uracil DNA glycosylase is required for efficient viral replication and latency in the murine nervous system , 1994, Journal of virology.

[68]  R. L. Thompson,et al.  Mutations in accessory DNA replicating functions alter the relative mutation frequency of herpes simplex virus type 1 strains in cultured murine cells , 1994, Journal of virology.

[69]  A. Durandy,et al.  Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells. , 2004, Nucleic acids research.