Chaos generation from 1D or 2D circuits including switches

Generation of chaos is of the highest interest for many kind of applications as secure transmissions, image processing or telecommunications. In this paper, we continue previous studies in order to show that chaotic signals can be obtained from very simple circuits including switches. Such circuits are very easy to implement and robust chaos can be obtained, depending upon parameter values. For this aim, it is necessary to study and understand the bifurcation structures of the circuit model.

[1]  Soumitro Banerjee,et al.  Robust Chaos , 1998, chao-dyn/9803001.

[2]  Volodymyr L. Maistrenko,et al.  On period-adding sequences of attracting cycles in piecewise linear maps , 1998 .

[3]  Pascal Chargé,et al.  Border collision bifurcations and chaotic sets in a two-dimensional piecewise linear map , 2011 .

[4]  Orla Feely,et al.  Control of MEMS Vibration Modes With Pulsed Digital Oscillators—Part II: Simulation and Experimental Results , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Hiroshi Kawakami,et al.  Experimental Realization of Controlling Chaos in the Periodically Switched Nonlinear Circuit , 2004, Int. J. Bifurc. Chaos.

[6]  J. Sousa Ramos,et al.  SYMBOLIC DYNAMICS OF BIMODAL MAPS , .

[7]  Riccardo Rovatti,et al.  Chaotic complex spreading sequences for asynchronous DS-CDMA. I. System modeling and results , 1997 .

[8]  R. Rovatti,et al.  Chaotic complex spreading sequences for asynchronous DS-CDMA. Part II. Some theoretical performance bounds , 1998 .

[9]  Soumyajit Mandal,et al.  An integrated CMOS chaos generator , 2003 .

[10]  Ricardo Severino,et al.  Isentropic Real cubic Maps , 2003, Int. J. Bifurc. Chaos.

[11]  Safwan El Assad,et al.  Improved Frey Chaotic Digital Encoder for Trellis-Coded Modulation , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[12]  Leon O. Chua,et al.  The double scroll , 1985 .

[13]  Laura Gardini,et al.  Degenerate bifurcations and Border Collisions in Piecewise Smooth 1D and 2D Maps , 2010, Int. J. Bifurc. Chaos.

[14]  T. Kousaka,et al.  Analysis of border-collision bifurcation in a simple circuit , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[15]  Pascal Chargé,et al.  Bifurcation structure in a circuit modeled by a 1-dimensional piecewise linear map , 2011 .

[16]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .