An Asymptotic Preserving Scheme Based on a New Formulation for NLS in the Semiclassical Limit

We consider the semiclassical limit for the nonlinear Schrodinger equation. We introduce a phase/amplitude representation given by a system similar to the hydrodynamical formulation, whose novelty consists of including some asymptotically vanishing viscosity. We prove that the system is always locally well-posed in a class of Sobolev spaces, and globally well-posed for a fixed positive Planck constant in the one-dimensional case. We propose a second order numerical scheme which is asymptotic preserving. Before singularities appear in the limiting Euler equation, we recover the quadratic physical observables as well as the wave function with mesh size and time step independent of the Planck constant. This approach is also well suited to the linear Schrodinger equation.

[1]  Claudia Negulescu,et al.  WKB-Based Schemes for the Oscillatory 1D Schrödinger Equation in the Semiclassical Limit , 2011, SIAM J. Numer. Anal..

[2]  Christof Sparber,et al.  Mathematical and computational methods for semiclassical Schrödinger equations* , 2011, Acta Numerica.

[3]  R. Danchin,et al.  Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .

[4]  Helge Holden,et al.  Operator splitting for partial differential equations with Burgers nonlinearity , 2011, Math. Comput..

[5]  Claudia Negulescu,et al.  An asymptotic-preserving method for highly anisotropic elliptic equations based on a Micro-Macro decomposition , 2011, J. Comput. Phys..

[6]  Fabrice Deluzet,et al.  Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality , 2010, J. Comput. Phys..

[7]  Giovanni Samaey,et al.  Asymptotic-preserving Projective Integration Schemes for Kinetic Equations in the Diffusion Limit , 2010, SIAM J. Sci. Comput..

[8]  Shi Jin,et al.  A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..

[9]  Luc Mieussens,et al.  A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..

[10]  Thierry Goudon,et al.  Numerical Schemes of Diffusion Asymptotics and Moment Closures for Kinetic Equations , 2008, J. Sci. Comput..

[11]  Luc Mieussens,et al.  Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics , 2008, J. Comput. Phys..

[12]  Clotilde Fermanian Kammerer,et al.  On the time evolution of Wigner measures for Schrodinger equations , 2008, 0803.0667.

[13]  Rémi Carles,et al.  Semi-Classical Analysis For Nonlinear Schrodinger Equations , 2008 .

[14]  Philippe G. LeFloch,et al.  Zero Diffusion-Dispersion Limits for Scalar Conservation Laws , 2007, SIAM J. Math. Anal..

[15]  Pierre Degond,et al.  An asymptotic preserving scheme for the Schrdinger equation in the semiclassical limit , 2007 .

[16]  Pierre Degond,et al.  An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit , 2007, J. Comput. Phys..

[17]  R. Carles,et al.  Loss of regularity for supercritical nonlinear Schrödinger equations , 2007, math/0701857.

[18]  Bruno Després,et al.  Asymptotic preserving and positive schemes for radiation hydrodynamics , 2006, J. Comput. Phys..

[19]  Laurent Gosse,et al.  Asymptotic-preserving & well-balanced schemes for radiative transfer and the Rosseland approximation , 2004, Numerische Mathematik.

[20]  Christophe Besse,et al.  A Relaxation Scheme for the Nonlinear Schrödinger Equation , 2004, SIAM J. Numer. Anal..

[21]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[22]  Peter A. Markowich,et al.  A Wigner-Measure Analysis of the Dufort-Frankel Scheme for the Schrödinger Equation , 2002, SIAM J. Numer. Anal..

[23]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[24]  Shi Jin,et al.  Uniformly Accurate Diffusive Relaxation Schemes for Multiscale Transport Equations , 2000, SIAM J. Numer. Anal..

[25]  Y. Brenier,et al.  convergence of the vlasov-poisson system to the incompressible euler equations , 2000 .

[26]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[27]  Peter A. Markowich,et al.  Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit , 1999, Numerische Mathematik.

[28]  Zhouping Xin,et al.  Blowup of smooth solutions to the compressible Navier‐Stokes equation with compact density , 1998 .

[29]  G. Toscani,et al.  Relaxation Schemes for Nonlinear Kinetic Equations , 1997 .

[30]  P. Markowich,et al.  Homogenization limits and Wigner transforms , 1997 .

[31]  Lixin Wu,et al.  DuFort--Frankel-Type Methods for Linear and Nonlinear Schrödinger Equations , 1996 .

[32]  T. Paul,et al.  Sur les mesures de Wigner , 1993 .

[33]  Georgios Akrivis,et al.  On optimal order error estimates for the nonlinear Schro¨dinger equation , 1993 .

[34]  B. Perthame,et al.  Numerical passage from kinetic to fluid equations , 1991 .

[35]  D. Pathria,et al.  Pseudo-spectral solution of nonlinear Schro¨dinger equations , 1990 .

[36]  Tosio Kato,et al.  Commutator estimates and the euler and navier‐stokes equations , 1988 .

[37]  S. Ukai,et al.  Sur la solution à support compact de l’equation d’Euler compressible , 1986 .

[38]  B. Herbst,et al.  Split-step methods for the solution of the nonlinear Schro¨dinger equation , 1986 .

[39]  Michel C. Delfour,et al.  Finite-difference solutions of a non-linear Schrödinger equation , 1981 .

[40]  E. Madelung,et al.  Quantentheorie in hydrodynamischer Form , 1927 .

[41]  Wenlei Wang,et al.  Nonlinearity , 2014, Encyclopedia of Social Network Analysis and Mining.

[42]  Rémi Carles,et al.  Numerical aspects of the nonlinear Schrödinger equation in the semiclassical limit in a supercritical regime , 2011 .

[43]  S. Ukai,et al.  Loss of regularity for super-critical nonlinear Schrödinger equations , 2008 .

[44]  David A. Micha,et al.  Quantum dynamics with trajectories. Introduction to quantum hydrodynamics , 2006 .

[45]  F. Lin,et al.  Semiclassical Limit of the Gross-Pitaevskii Equation in an Exterior Domain , 2006 .

[46]  Shi Jin,et al.  Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..

[47]  Christophe Besse,et al.  Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation , 2002, SIAM J. Numer. Anal..

[48]  张平 SEMICLASSICAL LIMIT OF NONLINEAR SCHROEDINGER EQUATION(II) , 2002 .

[49]  Ping Zhang,et al.  Wigner Measure and the Semiclassical Limit of Schrödinger-Poisson Equations , 2002, SIAM J. Math. Anal..

[50]  E. Grenier,et al.  Semiclassical limit of the nonlinear Schrödinger equation in small time , 1998 .

[51]  N. SIAMJ. AN ASYMPTOTIC-INDUCED SCHEME FOR NONSTATIONARY TRANSPORT EQUATIONS IN THE DIFFUSIVE LIMIT , 1998 .

[52]  Michael E. Taylor,et al.  Partial Differential Equations III , 1996 .

[53]  Georgios Akrivis,et al.  Finite difference discretization of the cubic Schrödinger equation , 1993 .

[54]  J. Chemin Dynamique des gaz à masse totale finie , 1990 .

[55]  J. G. Verwer,et al.  Conservative and nonconservative schemes for the solution of the nonlinear Schroedinger equation , 1984 .

[56]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.