An Asymptotic Preserving Scheme Based on a New Formulation for NLS in the Semiclassical Limit
暂无分享,去创建一个
[1] Claudia Negulescu,et al. WKB-Based Schemes for the Oscillatory 1D Schrödinger Equation in the Semiclassical Limit , 2011, SIAM J. Numer. Anal..
[2] Christof Sparber,et al. Mathematical and computational methods for semiclassical Schrödinger equations* , 2011, Acta Numerica.
[3] R. Danchin,et al. Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .
[4] Helge Holden,et al. Operator splitting for partial differential equations with Burgers nonlinearity , 2011, Math. Comput..
[5] Claudia Negulescu,et al. An asymptotic-preserving method for highly anisotropic elliptic equations based on a Micro-Macro decomposition , 2011, J. Comput. Phys..
[6] Fabrice Deluzet,et al. Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality , 2010, J. Comput. Phys..
[7] Giovanni Samaey,et al. Asymptotic-preserving Projective Integration Schemes for Kinetic Equations in the Diffusion Limit , 2010, SIAM J. Sci. Comput..
[8] Shi Jin,et al. A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..
[9] Luc Mieussens,et al. A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..
[10] Thierry Goudon,et al. Numerical Schemes of Diffusion Asymptotics and Moment Closures for Kinetic Equations , 2008, J. Sci. Comput..
[11] Luc Mieussens,et al. Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics , 2008, J. Comput. Phys..
[12] Clotilde Fermanian Kammerer,et al. On the time evolution of Wigner measures for Schrodinger equations , 2008, 0803.0667.
[13] Rémi Carles,et al. Semi-Classical Analysis For Nonlinear Schrodinger Equations , 2008 .
[14] Philippe G. LeFloch,et al. Zero Diffusion-Dispersion Limits for Scalar Conservation Laws , 2007, SIAM J. Math. Anal..
[15] Pierre Degond,et al. An asymptotic preserving scheme for the Schrdinger equation in the semiclassical limit , 2007 .
[16] Pierre Degond,et al. An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit , 2007, J. Comput. Phys..
[17] R. Carles,et al. Loss of regularity for supercritical nonlinear Schrödinger equations , 2007, math/0701857.
[18] Bruno Després,et al. Asymptotic preserving and positive schemes for radiation hydrodynamics , 2006, J. Comput. Phys..
[19] Laurent Gosse,et al. Asymptotic-preserving & well-balanced schemes for radiative transfer and the Rosseland approximation , 2004, Numerische Mathematik.
[20] Christophe Besse,et al. A Relaxation Scheme for the Nonlinear Schrödinger Equation , 2004, SIAM J. Numer. Anal..
[21] T. Cazenave. Semilinear Schrodinger Equations , 2003 .
[22] Peter A. Markowich,et al. A Wigner-Measure Analysis of the Dufort-Frankel Scheme for the Schrödinger Equation , 2002, SIAM J. Numer. Anal..
[23] P. Markowich,et al. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .
[24] Shi Jin,et al. Uniformly Accurate Diffusive Relaxation Schemes for Multiscale Transport Equations , 2000, SIAM J. Numer. Anal..
[25] Y. Brenier,et al. convergence of the vlasov-poisson system to the incompressible euler equations , 2000 .
[26] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[27] Peter A. Markowich,et al. Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit , 1999, Numerische Mathematik.
[28] Zhouping Xin,et al. Blowup of smooth solutions to the compressible Navier‐Stokes equation with compact density , 1998 .
[29] G. Toscani,et al. Relaxation Schemes for Nonlinear Kinetic Equations , 1997 .
[30] P. Markowich,et al. Homogenization limits and Wigner transforms , 1997 .
[31] Lixin Wu,et al. DuFort--Frankel-Type Methods for Linear and Nonlinear Schrödinger Equations , 1996 .
[32] T. Paul,et al. Sur les mesures de Wigner , 1993 .
[33] Georgios Akrivis,et al. On optimal order error estimates for the nonlinear Schro¨dinger equation , 1993 .
[34] B. Perthame,et al. Numerical passage from kinetic to fluid equations , 1991 .
[35] D. Pathria,et al. Pseudo-spectral solution of nonlinear Schro¨dinger equations , 1990 .
[36] Tosio Kato,et al. Commutator estimates and the euler and navier‐stokes equations , 1988 .
[37] S. Ukai,et al. Sur la solution à support compact de l’equation d’Euler compressible , 1986 .
[38] B. Herbst,et al. Split-step methods for the solution of the nonlinear Schro¨dinger equation , 1986 .
[39] Michel C. Delfour,et al. Finite-difference solutions of a non-linear Schrödinger equation , 1981 .
[40] E. Madelung,et al. Quantentheorie in hydrodynamischer Form , 1927 .
[41] Wenlei Wang,et al. Nonlinearity , 2014, Encyclopedia of Social Network Analysis and Mining.
[42] Rémi Carles,et al. Numerical aspects of the nonlinear Schrödinger equation in the semiclassical limit in a supercritical regime , 2011 .
[43] S. Ukai,et al. Loss of regularity for super-critical nonlinear Schrödinger equations , 2008 .
[44] David A. Micha,et al. Quantum dynamics with trajectories. Introduction to quantum hydrodynamics , 2006 .
[45] F. Lin,et al. Semiclassical Limit of the Gross-Pitaevskii Equation in an Exterior Domain , 2006 .
[46] Shi Jin,et al. Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..
[47] Christophe Besse,et al. Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation , 2002, SIAM J. Numer. Anal..
[48] 张平. SEMICLASSICAL LIMIT OF NONLINEAR SCHROEDINGER EQUATION(II) , 2002 .
[49] Ping Zhang,et al. Wigner Measure and the Semiclassical Limit of Schrödinger-Poisson Equations , 2002, SIAM J. Math. Anal..
[50] E. Grenier,et al. Semiclassical limit of the nonlinear Schrödinger equation in small time , 1998 .
[51] N. SIAMJ.. AN ASYMPTOTIC-INDUCED SCHEME FOR NONSTATIONARY TRANSPORT EQUATIONS IN THE DIFFUSIVE LIMIT , 1998 .
[52] Michael E. Taylor,et al. Partial Differential Equations III , 1996 .
[53] Georgios Akrivis,et al. Finite difference discretization of the cubic Schrödinger equation , 1993 .
[54] J. Chemin. Dynamique des gaz à masse totale finie , 1990 .
[55] J. G. Verwer,et al. Conservative and nonconservative schemes for the solution of the nonlinear Schroedinger equation , 1984 .
[56] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.