Role of bulk-magnon transport in the temporal evolution of the longitudinal spin-Seebeck effect

We present temporal evolution of the spin Seebeck effect in a YIG|Pt bilayer system. Our findings reveal that this effect is a sub-microseconds fast phenomenon governed by the temperature gradient and the thermal magnons diffusion in the magnetic materials. A comparison of experimental results with the thermal-driven magnon-diffusion model shows that the temporal behavior of this effect depends on the time development of the temperature gradient in the vicinity of the YIG|Pt interface. The effective thermal-magnon diffusion length for YIG|Pt systems is estimated to be around 700nm.