The biochemistry of Plasmodium falciparum

[1]  Manuel Llinás,et al.  Kinetic Flux Profiling Elucidates Two Independent Acetyl-CoA Biosynthetic Pathways in Plasmodium falciparum* , 2013, The Journal of Biological Chemistry.

[2]  Choukri Ben Mamoun,et al.  Plasmodium falciparum phosphoethanolamine methyltransferase is essential for malaria transmission , 2013, Proceedings of the National Academy of Sciences.

[3]  G. Padmanaban,et al.  Malaria Parasite-Synthesized Heme Is Essential in the Mosquito and Liver Stages and Complements Host Heme in the Blood Stages of Infection , 2013, PLoS pathogens.

[4]  L. Tilley,et al.  Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum , 2013, BMC Biology.

[5]  Amsha Nahid,et al.  Mitochondrial metabolism of glucose and glutamine is required for intracellular growth of Toxoplasma gondii. , 2012, Cell host & microbe.

[6]  B. Bergmann,et al.  The antioxidative effect of de novo generated vitamin B6 in Plasmodium falciparum validated by protein interference. , 2012, The Biochemical journal.

[7]  R. Anand,et al.  Mutational analysis of cysteine 328 and cysteine 368 at the interface of Plasmodium falciparum adenylosuccinate synthetase. , 2012, Biochimica et biophysica acta.

[8]  Leann Tilley,et al.  Soft X-ray microscopy analysis of cell volume and hemoglobin content in erythrocytes infected with asexual and sexual stages of Plasmodium falciparum. , 2012, Journal of structural biology.

[9]  S. Müller,et al.  Dissecting the role of glutathione biosynthesis in Plasmodium falciparum , 2012, Molecular microbiology.

[10]  Preeti,et al.  Structural analysis of chorismate synthase from Plasmodium falciparum: a novel target for antimalaria drug discovery. , 2011, International journal of biological macromolecules.

[11]  A. Nzila,et al.  The Molecular Basis of Folate Salvage in Plasmodium falciparum , 2011, The Journal of Biological Chemistry.

[12]  J. Yates,et al.  Protein S-glutathionylation in malaria parasites. , 2011, Antioxidants & redox signaling.

[13]  M. Mather,et al.  ATP Synthase Complex of Plasmodium falciparum , 2011, The Journal of Biological Chemistry.

[14]  H. Balaram,et al.  Substrate‐induced conformational changes in Plasmodium falciparum guanosine monophosphate synthetase , 2011, The FEBS journal.

[15]  Keshav K. Singh,et al.  Distinct Functions of Evolutionary Conserved MSF1 and Late Embryogenesis Abundant (LEA)-like Domains in Mitochondria* , 2011, The Journal of Biological Chemistry.

[16]  Marni Williams,et al.  Polyamine homoeostasis as a drug target in pathogenic protozoa: peculiarities and possibilities , 2011, The Biochemical journal.

[17]  E. Kimura,et al.  Isoprenoid biosynthesis in the erythrocytic stages of Plasmodium falciparum. , 2011, Memorias do Instituto Oswaldo Cruz.

[18]  Kellen L. Olszewski,et al.  Plasmodium falciparum glutamate dehydrogenase a is dispensable and not a drug target during erythrocytic development , 2011, Malaria Journal.

[19]  Aline A. Oliveira,et al.  Antimalarial Activity of Potential Inhibitors of Plasmodium falciparum Lactate Dehydrogenase Enzyme Selected by Docking Studies , 2011, PloS one.

[20]  W. Eisenreich,et al.  Biochemistry of the non-mevalonate isoprenoid pathway , 2011, Cellular and Molecular Life Sciences.

[21]  Choukri Ben Mamoun,et al.  Phosphoethanolamine methyltransferases in phosphocholine biosynthesis: functions and potential for antiparasite therapy. , 2011, FEMS microbiology reviews.

[22]  Joanne M. Morrisey,et al.  Variation among Plasmodium falciparum Strains in Their Reliance on Mitochondrial Electron Transport Chain Function , 2011, Eukaryotic Cell.

[23]  S. Rahlfs,et al.  Glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase: a unique bifunctional enzyme from Plasmodium falciparum. , 2011, The Biochemical journal.

[24]  G. Perkins,et al.  Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis. , 2011, Cell metabolism.

[25]  Marcel Deponte,et al.  The glyoxalase system of malaria parasites--implications for cell biology and general glyoxalase research. , 2011, Seminars in cell & developmental biology.

[26]  H. Balaram,et al.  Ammonia channeling in Plasmodium falciparum GMP synthetase: investigation by NMR spectroscopy and biochemical assays. , 2011, Biochemistry.

[27]  Jakob M. A. Mauritz,et al.  X-ray microanalysis investigation of the changes in Na, K, and hemoglobin concentration in plasmodium falciparum-infected red blood cells. , 2011, Biophysical journal.

[28]  T. Pomorski,et al.  Pumping lipids with P4-ATPases , 2011, Biological chemistry.

[29]  C. Wrenger,et al.  Specific inhibition of the aspartate aminotransferase of Plasmodium falciparum. , 2011, Journal of molecular biology.

[30]  A. Sauve,et al.  Characterization of nicotinamidases: steady state kinetic parameters, classwide inhibition by nicotinaldehydes, and catalytic mechanism. , 2010, Biochemistry.

[31]  S. Rahlfs,et al.  Compartmentation of Redox Metabolism in Malaria Parasites , 2010, PLoS pathogens.

[32]  R. Schwarz,et al.  Overlooked post-translational modifications of proteins in Plasmodium falciparum: N- and O-glycosylation -- a review. , 2010, Memorias do Instituto Oswaldo Cruz.

[33]  P. Rangarajan,et al.  Protoporphyrinogen IX oxidase from Plasmodium falciparum is anaerobic and is localized to the mitochondrion. , 2010, Molecular and biochemical parasitology.

[34]  A. Vaidya,et al.  Mitochondrial Electron Transport Inhibition and Viability of Intraerythrocytic Plasmodium falciparum , 2010, Antimicrobial Agents and Chemotherapy.

[35]  H. Vial,et al.  Phosphatidylinositol 3-Phosphate, an Essential Lipid in Plasmodium, Localizes to the Food Vacuole Membrane and the Apicoplast , 2010, Eukaryotic Cell.

[36]  M. Lanzer,et al.  Complementation of Saccharomyces cerevisiaepik1ts by a phosphatidylinositol 4-kinase from Plasmodium falciparum. , 2010, Molecular and biochemical parasitology.

[37]  S. Prigge,et al.  Validation of a modified method for Bxb1 mycobacteriophage integrase-mediated recombination in Plasmodium falciparum by localization of the H-protein of the glycine cleavage complex to the mitochondrion. , 2010, Molecular and biochemical parasitology.

[38]  Kellen L. Olszewski,et al.  Crystal structure of arginase from Plasmodium falciparum and implications for L-arginine depletion in malarial infection . , 2010, Biochemistry.

[39]  J. E. Hyde,et al.  Characterisation of the bifunctional dihydrofolate synthase–folylpolyglutamate synthase from Plasmodium falciparum; a potential novel target for antimalarial antifolate inhibition , 2010, Molecular and biochemical parasitology.

[40]  R. Schwarz,et al.  Immunological reactions in response to apicomplexan glycosylphosphatidylinositols. , 2010, Glycobiology.

[41]  P. Rangarajan,et al.  Characterization of coproporphyrinogen III oxidase in Plasmodium falciparum cytosol. , 2010, Parasitology international.

[42]  H. Balaram,et al.  Adenine metabolism in Plasmodium falciparum. , 2010, Experimental parasitology.

[43]  Pradipsinh K Rathod,et al.  Plasmodium dihydroorotate dehydrogenase: a promising target for novel anti-malarial chemotherapy. , 2010, Infectious disorders drug targets.

[44]  C. Spry,et al.  Pantothenate utilization by Plasmodium as a target for antimalarial chemotherapy. , 2010, Infectious disorders drug targets.

[45]  Choukri Ben Mamoun,et al.  PfNT2, a Permease of the Equilibrative Nucleoside Transporter Family in the Endoplasmic Reticulum of Plasmodium falciparum* , 2010, The Journal of Biological Chemistry.

[46]  W. V. Van Voorhis,et al.  Functional genetic analysis of the Plasmodium falciparum deoxyxylulose 5-phosphate reductoisomerase gene. , 2010, Molecular and biochemical parasitology.

[47]  Ravikant Ranjan,et al.  PfPI3K, a phosphatidylinositol-3 kinase from Plasmodium falciparum, is exported to the host erythrocyte and is involved in hemoglobin trafficking. , 2010, Blood.

[48]  G. McFadden,et al.  The evolution, metabolism and functions of the apicoplast , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[49]  Y. Kitade,et al.  Crystallization and preliminary X-ray crystallographic study of phosphoglucose isomerase from Plasmodium falciparum. , 2010, Acta crystallographica. Section F, Structural biology and crystallization communications.

[50]  Y. Kitade,et al.  Crystallization and preliminary X-ray crystallographic study of 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Plasmodium falciparum. , 2010, Acta crystallographica. Section F, Structural biology and crystallization communications.

[51]  M. Williams,et al.  Functional consequences of perturbing polyamine metabolism in the malaria parasite, Plasmodium falciparum , 2010, Amino Acids.

[52]  D. Parzy,et al.  Microaerophilic respiratory metabolism of Plasmodium falciparum mitochondrion as a drug target. , 2010, Current molecular medicine.

[53]  Eric Maréchal,et al.  Rodent and nonrodent malaria parasites differ in their phospholipid metabolic pathways[S] , 2010, Journal of Lipid Research.

[54]  Choukri Ben Mamoun,et al.  Targeting the lipid metabolic pathways for the treatment of malaria , 2009, Drug development research.

[55]  M. Mehta,et al.  Plant-like phosphofructokinase from Plasmodium falciparum belongs to a novel class of ATP-dependent enzymes. , 2009, International journal for parasitology.

[56]  P. Rathod,et al.  Catalytic and ligand-binding characteristics of Plasmodium falciparum serine hydroxymethyltransferase. , 2009, Molecular and biochemical parasitology.

[57]  T. Mogi,et al.  Identification of mitochondrial Complex II subunits SDH3 and SDH4 and ATP synthase subunits a and b in Plasmodium spp. , 2009, Mitochondrion.

[58]  P. Rangarajan,et al.  Mitochondrial localization of functional ferrochelatase from Plasmodium falciparum. , 2009, Molecular and biochemical parasitology.

[59]  Cameron V. Jennings,et al.  Suggestive Evidence for Darwinian Selection against Asparagine-Linked Glycans of Plasmodium falciparum and Toxoplasma gondii , 2009, Eukaryotic Cell.

[60]  M. Mather,et al.  Mitochondrial evolution and functions in malaria parasites. , 2009, Annual review of microbiology.

[61]  U. Murty,et al.  Structural model of the Plasmodium falciparum thioredoxin reductase:a novel target for antimalarial drugs. , 2009, Journal of vector borne diseases.

[62]  C. Spry,et al.  The Human Malaria Parasite Plasmodium falciparum Is Not Dependent on Host Coenzyme A Biosynthesis* , 2009, The Journal of Biological Chemistry.

[63]  C. Wrenger,et al.  The activity of Plasmodium falciparum arginase is mediated by a novel inter‐monomer salt‐bridge between Glu295–Arg404 , 2009, The FEBS journal.

[64]  G. Zanetti,et al.  The ferredoxin‐NADP+ reductase/ferredoxin electron transfer system of Plasmodium falciparum , 2009, The FEBS journal.

[65]  Clemens F. Kaminski,et al.  The Homeostasis of Plasmodium falciparum-Infected Red Blood Cells , 2009, PLoS Comput. Biol..

[66]  K. Kirk,et al.  Metabolite profiling of the intraerythrocytic malaria parasite Plasmodium falciparum by 1H NMR spectroscopy , 2009, NMR in biomedicine.

[67]  S. Rahlfs,et al.  Identification of Proteins Targeted by the Thioredoxin Superfamily in Plasmodium falciparum , 2009, PLoS pathogens.

[68]  H. Balaram,et al.  Elucidation of the substrate specificity, kinetic and catalytic mechanism of adenylosuccinate lyase from Plasmodium falciparum. , 2009, Biochimica et biophysica acta.

[69]  Nicholas Fisher,et al.  Glycerol: An unexpected major metabolite of energy metabolism by the human malaria parasite , 2009, Malaria Journal.

[70]  Kellen L. Olszewski,et al.  Host-parasite interactions revealed by Plasmodium falciparum metabolomics. , 2009, Cell host & microbe.

[71]  Manuel Llinás,et al.  Co-inhibition of Plasmodium falciparum S-Adenosylmethionine Decarboxylase/Ornithine Decarboxylase Reveals Perturbation-specific Compensatory Mechanisms by Transcriptome, Proteome, and Metabolome Analyses* , 2009, Journal of Biological Chemistry.

[72]  B. Tekwani,et al.  Analysis of quaternary structure of a [LDH-like] malate dehydrogenase of Plasmodium falciparum with oligomeric mutants , 2009, Molecular and Cellular Biochemistry.

[73]  A. Vaughan,et al.  Type II fatty acid synthesis is essential only for malaria parasite late liver stage development , 2008, Cellular microbiology.

[74]  S. Ralph,et al.  Theileria Apicoplast as a Target for Chemotherapy , 2008, Antimicrobial Agents and Chemotherapy.

[75]  Joel S. Freundlich,et al.  The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. , 2008, Cell host & microbe.

[76]  Donelly A van Schalkwyk,et al.  The Inhibitory Effect of 2-Halo Derivatives of d-Glucose on Glycolysis and on the Proliferation of the Human Malaria Parasite Plasmodium falciparum , 2008, Journal of Pharmacology and Experimental Therapeutics.

[77]  G. Pessi,et al.  Disruption of the Plasmodium falciparum PfPMT Gene Results in a Complete Loss of Phosphatidylcholine Biosynthesis via the Serine-Decarboxylase-Phosphoethanolamine-Methyltransferase Pathway and Severe Growth and Survival Defects* , 2008, Journal of Biological Chemistry.

[78]  D. Soldati-Favre,et al.  Apicomplexan mitochondrial metabolism: a story of gains, losses and retentions. , 2008, Trends in parasitology.

[79]  J. Weinberg,et al.  Arginine, nitric oxide, carbon monoxide, and endothelial function in severe malaria , 2008, Current opinion in infectious diseases.

[80]  M. Mather,et al.  Mitochondria in malaria and related parasites: ancient, diverse and streamlined , 2008, Journal of bioenergetics and biomembranes.

[81]  K. Hirayama,et al.  Effects of amino acids on malarial heme crystallization. , 2008, Biological & pharmaceutical bulletin.

[82]  J. Satrústegui,et al.  Yeast mitochondria import ATP through the calcium‐dependent ATP‐Mg/Pi carrier Sal1p, and are ATP consumers during aerobic growth in glucose , 2008, Molecular microbiology.

[83]  P. Rosenthal,et al.  Plasmodium Food Vacuole Plasmepsins Are Activated by Falcipains* , 2008, Journal of Biological Chemistry.

[84]  R. Coppel,et al.  Hot, sweet and sticky: the glycobiology of Plasmodium falciparum. , 2008, Trends in parasitology.

[85]  T. Egan,et al.  Recent advances in understanding the mechanism of hemozoin (malaria pigment) formation. , 2008, Journal of inorganic biochemistry.

[86]  T. Kuijpers,et al.  Mitochondrial Membrane Potential in Human Neutrophils Is Maintained by Complex III Activity in the Absence of Supercomplex Organisation , 2008, PloS one.

[87]  J. Andersen,et al.  HDP—A Novel Heme Detoxification Protein from the Malaria Parasite , 2008, PLoS pathogens.

[88]  R. D. Walter,et al.  The Assembly of the Plasmodial PLP Synthase Complex Follows a Defined Course , 2008, PloS one.

[89]  K. Kirk,et al.  Purine nucleobase transport in the intraerythrocytic malaria parasite. , 2008, International journal for parasitology.

[90]  B. Bergmann,et al.  Filling the gap of intracellular dephosphorylation in the Plasmodium falciparum vitamin B1 biosynthesis. , 2008, Molecular and biochemical parasitology.

[91]  P. Rangarajan,et al.  Unique Properties of Plasmodium falciparum Porphobilinogen Deaminase* , 2008, Journal of Biological Chemistry.

[92]  J. E. Hyde,et al.  An atypical orthologue of 6-pyruvoyltetrahydropterin synthase can provide the missing link in the folate biosynthesis pathway of malaria parasites , 2007, Molecular microbiology.

[93]  T. Horii,et al.  Molecular interaction of ferredoxin and ferredoxin-NADP+ reductase from human malaria parasite. , 2007, Journal of biochemistry.

[94]  I. Tews,et al.  Structural and thermodynamic insights into the assembly of the heteromeric pyridoxal phosphate synthase from Plasmodium falciparum. , 2007, Journal of molecular biology.

[95]  Virander S. Chauhan,et al.  Food vacuole targeting and trafficking of falcipain-2, an important cysteine protease of human malaria parasite Plasmodium falciparum. , 2007, Molecular and biochemical parasitology.

[96]  D. Goldberg,et al.  Evaluation of pH during cytostomal endocytosis and vacuolar catabolism of haemoglobin in Plasmodium falciparum. , 2007, The Biochemical journal.

[97]  K. Becker,et al.  Allosteric Coupling of Two Different Functional Active Sites in Monomeric Plasmodium falciparum Glyoxalase I* , 2007, Journal of Biological Chemistry.

[98]  Daniel J. Kelleher,et al.  The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation , 2007, Proceedings of the National Academy of Sciences.

[99]  J. Dame,et al.  Critical roles for the digestive vacuole plasmepsins of Plasmodium falciparum in vacuolar function , 2007, Molecular microbiology.

[100]  S. Briolant,et al.  Influence of oxygen on asexual blood cycle and susceptibility of Plasmodium falciparum to chloroquine: requirement of a standardized in vitro assay , 2007, Malaria Journal.

[101]  M. T. McIntosh,et al.  Traffic to the Malaria Parasite Food Vacuole , 2007, Journal of Biological Chemistry.

[102]  P. Verloo,et al.  Electrophysiological studies of malaria parasite-infected erythrocytes: current status. , 2007, International journal for parasitology.

[103]  Kiaran Kirk,et al.  Transport of the essential nutrient isoleucine in human erythrocytes infected with the malaria parasite Plasmodium falciparum. , 2007, Blood.

[104]  T. Horii,et al.  Cloning and characterization of ferredoxin and ferredoxin-NADP+ reductase from human malaria parasite. , 2006, Journal of biochemistry.

[105]  P. Rosenthal,et al.  Gene disruptions demonstrate independent roles for the four falcipain cysteine proteases of Plasmodium falciparum. , 2006, Molecular and biochemical parasitology.

[106]  Ana Rodriguez,et al.  The silent path to thousands of merozoites: the Plasmodium liver stage , 2006, Nature Reviews Microbiology.

[107]  Pietro De Camilli,et al.  Phosphoinositides in cell regulation and membrane dynamics , 2006, Nature.

[108]  M. Mehta,et al.  Glycolysis in Plasmodium falciparum results in modulation of host enzyme activities. , 2006, Journal of vector borne diseases.

[109]  L. Kats,et al.  A Set of Glycosylphosphatidyl Inositol-Anchored Membrane Proteins of Plasmodium falciparum Is Refractory to Genetic Deletion , 2006, Infection and Immunity.

[110]  G. McFadden,et al.  Metabolic maps and functions of the Plasmodium mitochondrion. , 2006, FEMS microbiology reviews.

[111]  Yongyuth Yuthavong,et al.  Folate metabolism as a source of molecular targets for antimalarials. , 2006, Future microbiology.

[112]  Jun Liu,et al.  Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[113]  G. Biagini,et al.  Functional Characterization and Target Validation of Alternative Complex I of Plasmodium falciparum Mitochondria , 2006, Antimicrobial Agents and Chemotherapy.

[114]  G. Folkers,et al.  Recombinant Expression and Biochemical Characterization of the Unique Elongating β-Ketoacyl-Acyl Carrier Protein Synthase Involved in Fatty Acid Biosynthesis of Plasmodium falciparum Using Natural and Artificial Substrates* , 2006, Journal of Biological Chemistry.

[115]  G. Kryukov,et al.  The Plasmodium selenoproteome , 2006, Nucleic acids research.

[116]  A. Fairlamb,et al.  Kinetic, inhibition and structural studies on 3-oxoacyl-ACP reductase from Plasmodium falciparum, a key enzyme in fatty acid biosynthesis. , 2006, The Biochemical journal.

[117]  M. Mehta,et al.  Malaria parasite‐infected erythrocytes inhibit glucose utilization in uninfected red cells , 2005, FEBS letters.

[118]  K. Hodgson,et al.  Crystal structure of glyceraldehyde‐3‐phosphate dehydrogenase from Plasmodium falciparum at 2.25 Å resolution reveals intriguing extra electron density in the active site , 2005, Proteins.

[119]  W. O'Sullivan,et al.  Functional expression of the gene encoding cytidine triphosphate synthetase from Plasmodium falciparum which contains two novel sequences that are potential antimalarial targets. , 2005, Molecular and biochemical parasitology.

[120]  G. Patterson,et al.  An iron regulatory-like protein expressed in Plasmodium falciparum displays aconitase activity. , 2005, Molecular and biochemical parasitology.

[121]  J. Luft,et al.  Structures of Plasmodium falciparum purine nucleoside phosphorylase complexed with sulfate and its natural substrate inosine. , 2005, Acta crystallographica. Section D, Biological crystallography.

[122]  H. Vial,et al.  Pharmacological Properties of a New Antimalarial Bisthiazolium Salt, T3, and a Corresponding Prodrug, TE3 , 2005, Antimicrobial Agents and Chemotherapy.

[123]  J. Hyde,et al.  A glycine-cleavage complex as part of the folate one-carbon metabolism of Plasmodium falciparum. , 2005, Trends in parasitology.

[124]  Frank Seeber,et al.  The plant-type ferredoxin-NADP+ reductase/ferredoxin redox system as a possible drug target against apicomplexan human parasites. , 2005, Current pharmaceutical design.

[125]  K. Lüersen,et al.  The spermidine synthase of the malaria parasite Plasmodium falciparum: molecular and biochemical characterisation of the polyamine synthesis enzyme. , 2005, Molecular and biochemical parasitology.

[126]  G. Klebe,et al.  The crystal structure of Plasmodium falciparum glutamate dehydrogenase, a putative target for novel antimalarial drugs. , 2005, Journal of molecular biology.

[127]  J. E. Hyde,et al.  Exploring the folate pathway in Plasmodium falciparum. , 2005, Acta tropica.

[128]  G. Pessi,et al.  In Vivo Evidence for the Specificity of Plasmodium falciparum Phosphoethanolamine Methyltransferase and Its Coupling to the Kennedy Pathway* , 2005, Journal of Biological Chemistry.

[129]  Hagai Ginsburg,et al.  Data mining of the transcriptome of Plasmodium falciparum: the pentose phosphate pathway and ancillary processes , 2005, Malaria Journal.

[130]  R. D. Walter,et al.  Analysis of the Vitamin B6 Biosynthesis Pathway in the Human Malaria Parasite Plasmodium falciparum* , 2005, Journal of Biological Chemistry.

[131]  B. Barrell,et al.  A selenocysteine tRNA and SECIS element in Plasmodium falciparum. , 2005, RNA.

[132]  R. Wilson Parasite plastids: approaching the endgame , 2005, Biological reviews of the Cambridge Philosophical Society.

[133]  Jun Liu,et al.  The Role of Plasmodium falciparum Food Vacuole Plasmepsins* , 2005, Journal of Biological Chemistry.

[134]  S. Krungkrai,et al.  A novel enzyme complex of orotate phosphoribosyltransferase and orotidine 5'-monophosphate decarboxylase in human malaria parasite Plasmodium falciparum: physical association, kinetics, and inhibition characterization. , 2005, Biochemistry.

[135]  T. Sim,et al.  Functional analysis, overexpression, and kinetic characterization of pyruvate kinase from Plasmodium falciparum. , 2004, Biochemical and biophysical research communications.

[136]  M. Cassera,et al.  The Methylerythritol Phosphate Pathway Is Functionally Active in All Intraerythrocytic Stages of Plasmodium falciparum* , 2004, Journal of Biological Chemistry.

[137]  G. McFadden,et al.  The human malaria parasite Plasmodium falciparum possesses two distinct dihydrolipoamide dehydrogenases , 2004, Molecular microbiology.

[138]  G. McFadden,et al.  The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast , 2004, Molecular microbiology.

[139]  Ruth H. Hughes,et al.  Characterization of the choline carrier of Plasmodium falciparum: a route for the selective delivery of novel antimalarial drugs. , 2004, Blood.

[140]  L. Tilley,et al.  Food vacuole‐associated lipid bodies and heterogeneous lipid environments in the malaria parasite, Plasmodium falciparum , 2004, Molecular microbiology.

[141]  S. Müller Redox and antioxidant systems of the malaria parasite Plasmodium falciparum , 2004, Molecular microbiology.

[142]  Christopher J. Tonkin,et al.  Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. , 2004, Molecular and biochemical parasitology.

[143]  B. Tekwani,et al.  An alpha-proteobacterial type malate dehydrogenase may complement LDH function in Plasmodium falciparum. Cloning and biochemical characterization of the enzyme. , 2004, European journal of biochemistry.

[144]  M. Kapoor,et al.  Mutational analysis of the triclosan-binding region of enoyl-ACP (acyl-carrier protein) reductase from Plasmodium falciparum. , 2004, The Biochemical journal.

[145]  H. Vial,et al.  Automated monitoring of phosphatidylcholine biosyntheses in Plasmodium falciparum by electrospray ionization mass spectrometry through stable isotope labeling experiments. , 2004, Analytical chemistry.

[146]  Araceli,et al.  Identification and Activity of a Series of Azole-based Compounds with Lactate Dehydrogenase-directed Anti-malarial Activity* , 2004, Journal of Biological Chemistry.

[147]  K. Kirk,et al.  Choline uptake into the malaria parasite is energized by the membrane potential. , 2004, Biochemical and Biophysical Research Communications - BBRC.

[148]  V. J. Peres,et al.  Terpenes Arrest Parasite Development and Inhibit Biosynthesis of Isoprenoids in Plasmodium falciparum , 2004, Antimicrobial Agents and Chemotherapy.

[149]  J. E. Hyde,et al.  Genetic and metabolic analysis of folate salvage in the human malaria parasite Plasmodium falciparum. , 2004, Molecular and biochemical parasitology.

[150]  T. Tiffert,et al.  Excess haemoglobin digestion by malaria parasites: a strategy to prevent premature host cell lysis. , 2004, Blood cells, molecules & diseases.

[151]  G. Evans,et al.  Plasmodium falciparum Purine Nucleoside Phosphorylase , 2004, Journal of Biological Chemistry.

[152]  G. Pessi,et al.  A pathway for phosphatidylcholine biosynthesis in Plasmodium falciparum involving phosphoethanolamine methylation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[153]  N. Chandra,et al.  Delta-aminolevulinic acid dehydratase from Plasmodium falciparum: indigenous versus imported. , 2004, The Journal of biological chemistry.

[154]  David R Westhead,et al.  Annotating the Plasmodium genome and the enigma of the shikimate pathway. , 2004, Trends in parasitology.

[155]  M. Murthy,et al.  Crystal structure of fully ligated adenylosuccinate synthetase from Plasmodium falciparum. , 2004, Journal of molecular biology.

[156]  I. Gluzman,et al.  Trafficking of plasmepsin II to the food vacuole of the malaria parasite Plasmodium falciparum , 2004, The Journal of cell biology.

[157]  S. Rahlfs,et al.  Glyoxalase I of the malarial parasite Plasmodium falciparum: evidence for subunit fusion , 2003, FEBS letters.

[158]  K. Haldar,et al.  Neutral-Lipid Analysis Reveals Elevation of Acylglycerols and Lack of Cholesterol Esters in Plasmodium falciparum-Infected Erythrocytes , 2003, Eukaryotic Cell.

[159]  P. Arese,et al.  Mechanisms of band 3 oxidation and clustering in the phagocytosis of Plasmodium falciparum-infected erythrocytes , 2003, Redox report : communications in free radical research.

[160]  Travis Harrison,et al.  Cooperative domains define a unique host cell-targeting signal in Plasmodium falciparum-infected erythrocytes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[161]  Virander S. Chauhan,et al.  Hemozoin formation in malaria: a two-step process involving histidine-rich proteins and lipids. , 2003, Biochemical and biophysical research communications.

[162]  Eva Liebau,et al.  Thiol-based redox metabolism of protozoan parasites. , 2003, Trends in parasitology.

[163]  P. Kubes,et al.  Anti-adhesive effect of nitric oxide on Plasmodium falciparum cytoadherence under flow. , 2003, The American journal of pathology.

[164]  S. Müller,et al.  Isocitrate dehydrogenase of Plasmodium falciparum. , 2003, European journal of biochemistry.

[165]  T. Sim,et al.  Recombinant Plasmodium falciparum NADP-dependent isocitrate dehydrogenase is active and harbours a unique 26 amino acid tail. , 2003, Experimental parasitology.

[166]  K. Kirk,et al.  Acidification of the Malaria Parasite's Digestive Vacuole by a H+-ATPase and a H+-pyrophosphatase* , 2003, The Journal of Biological Chemistry.

[167]  Evelin Schwarzer,et al.  Malaria-parasitized erythrocytes and hemozoin nonenzymatically generate large amounts of hydroxy fatty acids that inhibit monocyte functions. , 2003, Blood.

[168]  S. Müller,et al.  Regulation of intracellular glutathione levels in erythrocytes infected with chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum. , 2002, The Biochemical journal.

[169]  S. Parthasarathy,et al.  Structures of Plasmodium falciparum triosephosphate isomerase complexed to substrate analogues: observation of the catalytic loop in the open conformation in the ligand-bound state. , 2002, Acta crystallographica. Section D, Biological crystallography.

[170]  S. Parthasarathy,et al.  Structure of the Plasmodium falciparum triosephosphate isomerase-phosphoglycolate complex in two crystal forms: characterization of catalytic loop open and closed conformations in the ligand-bound state. , 2002, Biochemistry.

[171]  D. Chakrabarti,et al.  Protein Farnesyltransferase and Protein Prenylation inPlasmodium falciparum * , 2002, The Journal of Biological Chemistry.

[172]  D. Williamson,et al.  Alanine metabolism in acute falciparum malaria , 2002, Tropical medicine & international health : TM & IH.

[173]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[174]  R. Schwarz,et al.  Synthesis of Chloroplast Galactolipids in Apicomplexan Parasites , 2002, Eukaryotic Cell.

[175]  T. Egan,et al.  Fate of haem iron in the malaria parasite Plasmodium falciparum. , 2002, The Biochemical journal.

[176]  G. McFadden,et al.  Processing of an Apicoplast Leader Sequence inPlasmodium falciparum and the Identification of a Putative Leader Cleavage Enzyme* , 2002, The Journal of Biological Chemistry.

[177]  R. Jayalakshmi,et al.  Purification and characterization of recombinant Plasmodium falciparum adenylosuccinate synthetase expressed in Escherichia coli. , 2002, Protein expression and purification.

[178]  D. Fidock,et al.  Structural Elucidation of the Specificity of the Antibacterial Agent Triclosan for Malarial Enoyl Acyl Carrier Protein Reductase* , 2002, The Journal of Biological Chemistry.

[179]  H. Ginsburg,et al.  Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins. , 2002, Molecular and biochemical parasitology.

[180]  K. Kurokawa,et al.  Plasmodium falciparum Phospholipase C Hydrolyzing Sphingomyelin and Lysocholinephospholipids Is a Possible Target for Malaria Chemotherapy , 2002, The Journal of experimental medicine.

[181]  M. Kapoor,et al.  Kinetic determinants of the interaction of enoyl-ACP reductase from Plasmodium falciparum with its substrates and inhibitors. , 2001, Biochemical and biophysical research communications.

[182]  C. S. Gavigan,et al.  The role of aminopeptidases in haemoglobin degradation in Plasmodium falciparum-infected erythrocytes. , 2001, Molecular and biochemical parasitology.

[183]  S. Müller,et al.  The Plasmodium falciparum Bifunctional Ornithine Decarboxylase, S-Adenosyl-l-methionine Decarboxylase, Enables a Well Balanced Polyamine Synthesis without Domain-Domain Interaction* , 2001, The Journal of Biological Chemistry.

[184]  K. Kirk,et al.  H+-coupled Pantothenate Transport in the Intracellular Malaria Parasite* , 2001, The Journal of Biological Chemistry.

[185]  K. Kirk,et al.  Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum. , 2001, The Biochemical journal.

[186]  N. Surolia,et al.  Structural basis for triclosan and NAD binding to enoyl-ACP reductase of Plasmodium falciparum. , 2001, Biochemical and biophysical research communications.

[187]  B. Kappes,et al.  Subcellular localization and characterization of chorismate synthase in the apicomplexan Plasmodium falciparum , 2001, Molecular Microbiology.

[188]  O. Sodeinde,et al.  Glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase. A novel bifunctional enzyme in malaria parasites. , 2001, European journal of biochemistry.

[189]  B. Gamain,et al.  The Putative Glutathione Peroxidase Gene of Plasmodium falciparum Codes for a Thioredoxin Peroxidase* , 2001, The Journal of Biological Chemistry.

[190]  P. Gerold,et al.  Biosynthesis of glycosphingolipids de-novo by the human malaria parasite Plasmodium falciparum. , 2001, Molecular and biochemical parasitology.

[191]  H. Balaram,et al.  Evidence for multiple active states of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase. , 2000, Biochemical and biophysical research communications.

[192]  T. Mitamura,et al.  Serum factors governing intraerythrocytic development and cell cycle progression of Plasmodium falciparum. , 2000, Parasitology international.

[193]  S. Dhanasekaran,et al.  Import of host δ-aminolevulinate dehydratase into the malarial parasite: Identification of a new drug target , 2000, Nature Medicine.

[194]  K. Haldar,et al.  Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection , 2000, The EMBO journal.

[195]  G. McConkey,et al.  Identification of a nucleoside/nucleobase transporter from Plasmodium falciparum, a novel target for anti-malarial chemotherapy. , 2000, The Biochemical journal.

[196]  R. Hayward,et al.  Plasmodium falciparum phosphoenolpyruvate carboxykinase is developmentally regulated in gametocytes. , 2000, Molecular and biochemical parasitology.

[197]  R. Schirmer,et al.  Deletion of the parasite-specific insertions and mutation of the catalytic triad in glutathione reductase from chloroquine-sensitive Plasmodium falciparum 3D7. , 2000, Molecular and biochemical parasitology.

[198]  K. Kita,et al.  Succinate dehydrogenase in Plasmodium falciparum mitochondria: molecular characterization of the SDHA and SDHB genes for the catalytic subunits, the flavoprotein (Fp) and iron-sulfur (Ip) subunits. , 2000, Molecular and biochemical parasitology.

[199]  D. Goldberg,et al.  Isolation and Functional Characterization of the PfNT1 Nucleoside Transporter Gene from Plasmodium falciparum * , 2000, The Journal of Biological Chemistry.

[200]  T. Agbenyega,et al.  Glucose and lactate kinetics in children with severe malaria. , 2000, The Journal of clinical endocrinology and metabolism.

[201]  R. Madhubala,et al.  In the Human Malaria Parasite Plasmodium falciparum,Polyamines Are Synthesized by a Bifunctional Ornithine Decarboxylase,S-Adenosylmethionine Decarboxylase* , 2000, The Journal of Biological Chemistry.

[202]  P. Gerold,et al.  Plasmodium falciparum: merozoite surface proteins 1 and 2 are not posttranslationally modified by classical N- or O-glycans. , 2000, Experimental parasitology.

[203]  N. Suraveratum,et al.  Purification and characterization of Plasmodium falciparum succinate dehydrogenase. , 2000, Molecular and biochemical parasitology.

[204]  A. Alcina,et al.  The cloning and expression of Pfacs1, a Plasmodium falciparum fatty acyl coenzyme A synthetase-1 targeted to the host erythrocyte cytoplasm. , 1999, Journal of molecular biology.

[205]  R. Furneaux,et al.  The 2.0 A structure of malarial purine phosphoribosyltransferase in complex with a transition-state analogue inhibitor. , 1999, Biochemistry.

[206]  V. J. Peres,et al.  Active isoprenoid pathway in the intra-erythrocytic stages of Plasmodium falciparum: presence of dolichols of 11 and 12 isoprene units. , 1999, The Biochemical journal.

[207]  S. Krungkrai,et al.  Molecular characterization of mitochondria in asexual and sexual blood stages of Plasmodium falciparum. , 1999, Molecular cell biology research communications : MCBRC.

[208]  H. Ginsburg,et al.  Kinetics of inhibition of glutathione-mediated degradation of ferriprotoporphyrin IX by antimalarial drugs. , 1999, Biochemical pharmacology.

[209]  J. E. Hyde,et al.  Utilization of exogenous folate in the human malaria parasite Plasmodium falciparum and its critical role in antifolate drug synergy , 1999, Molecular microbiology.

[210]  H. Ginsburg,et al.  The fate of ferriprotorphyrin IX in malaria infected erythrocytes in conjunction with the mode of action of antimalarial drugs. , 1999, Molecular and biochemical parasitology.

[211]  F. Lottspeich,et al.  Glutamate dehydrogenase, the marker protein of Plasmodium falciparum--cloning, expression and characterization of the malarial enzyme. , 1998, European journal of biochemistry.

[212]  H. Ginsburg,et al.  Inhibition of glutathione-dependent degradation of heme by chloroquine and amodiaquine as a possible basis for their antimalarial mode of action. , 1998, Biochemical pharmacology.

[213]  W. O'Sullivan,et al.  Molecular cloning and characterization of the Plasmodium falciparum cytidine triphosphate synthetase gene. , 1998, Biochimica et biophysica acta.

[214]  D. Chakrabarti,et al.  Protein prenyl transferase activities of Plasmodium falciparum. , 1998, Molecular and biochemical parasitology.

[215]  D. Chakrabarti,et al.  Evidence for the shikimate pathway in apicomplexan parasites , 1998, Nature.

[216]  K. Kirk,et al.  Transport and Metabolism of the Essential Vitamin Pantothenic Acid in Human Erythrocytes Infected with the Malaria ParasitePlasmodium falciparum * , 1998, The Journal of Biological Chemistry.

[217]  W G Hol,et al.  Crystal structure of fructose-1,6-bisphosphate aldolase from the human malaria parasite Plasmodium falciparum. , 1998, Biochemistry.

[218]  H. Ginsburg,et al.  The malaria parasite supplies glutathione to its host cell--investigation of glutathione transport and metabolism in human erythrocytes infected with Plasmodium falciparum. , 1997, European journal of biochemistry.

[219]  R. Coppel,et al.  Characterisation of the gene encoding adenylosuccinate lyase of Plasmodium falciparum. , 1997, Molecular and biochemical parasitology.

[220]  D. Goldberg,et al.  Biosynthesis and Maturation of the Malaria Aspartic Hemoglobinases Plasmepsins I and II* , 1997, The Journal of Biological Chemistry.

[221]  P. Rathod,et al.  A membrane network for nutrient import in red cells infected with the malaria parasite. , 1997, Science.

[222]  M. H. Park,et al.  Is hypusine essential for eukaryotic cell proliferation? , 1997, Trends in biochemical sciences.

[223]  D. Gowda,et al.  Glycosylphosphatidylinositol Anchors Represent the Major Carbohydrate Modification in Proteins of Intraerythrocytic Stage Plasmodium falciparum* , 1997, The Journal of Biological Chemistry.

[224]  V. J. Peres,et al.  N-Linked Glycoproteins Are Related to Schizogony of the Intraerythrocytic Stage in Plasmodium falciparum* , 1996, The Journal of Biological Chemistry.

[225]  D. Sullivan,et al.  Plasmodium Hemozoin Formation Mediated by Histidine-Rich Proteins , 1996, Science.

[226]  K. Haldar,et al.  Sphingolipid synthesis as a target for chemotherapy against malaria parasites. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[227]  J. Krungkrai Purification, characterization and localization of mitochondrial dihydroorotate dehydrogenase in Plasmodium falciparum, human malaria parasite. , 1995, Biochimica et biophysica acta.

[228]  H. Ginsburg,et al.  Hexose-monophosphate shunt activity in intact Plasmodium falciparum-infected erythrocytes and in free parasites. , 1994, Molecular and biochemical parasitology.

[229]  K. Haldar,et al.  Plasmodium falciparum exports the Golgi marker sphingomyelin synthase into a tubovesicular network in the cytoplasm of mature erythrocytes , 1994, The Journal of cell biology.

[230]  P. Gerold,et al.  Glycosylphosphatidylinositols synthesized by asexual erythrocytic stages of the malarial parasite, Plasmodium falciparum. Candidates for plasmodial glycosylphosphatidylinositol membrane anchor precursors and pathogenicity factors. , 1994, The Journal of biological chemistry.

[231]  K. Haldar,et al.  Identification and localization of ERD2 in the malaria parasite Plasmodium falciparum: separation from sites of sphingomyelin synthesis and implications for organization of the Golgi. , 1993, The EMBO journal.

[232]  H. Ginsburg,et al.  Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum. , 1993, Molecular and biochemical parasitology.

[233]  F. Hackett,et al.  Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites , 1993, The Journal of experimental medicine.

[234]  U. Certa,et al.  Molecular analysis of Plasmodium falciparum hexokinase. , 1992, Molecular and biochemical parasitology.

[235]  G. Padmanaban,et al.  de novo biosynthesis of heme offers a new chemotherapeutic target in the human malarial parasite. , 1992, Biochemical and biophysical research communications.

[236]  I. Eto,et al.  Regulatory Role of Oxidized and Reduced Pteroylpolyglutamates , 1992, Annals of the New York Academy of Sciences.

[237]  Nasir-ud-din,et al.  Plasmodium falciparum synthesizes O-glycosylated glycoproteins containing O-linked N-acetylglucosamine. , 1992, Biochemistry international.

[238]  K. Haldar,et al.  The accumulation and metabolism of a fluorescent ceramide derivative in Plasmodium falciparum-infected erythrocytes. , 1991, Molecular and biochemical parasitology.

[239]  P. Dutta Enhanced uptake and metabolism of riboflavin in erythrocytes infected with Plasmodium falciparum. , 1991, The Journal of protozoology.

[240]  G. Padmanaban,et al.  Chloroquine inhibits heme-dependent protein synthesis in Plasmodium falciparum. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[241]  B. Roelofsen,et al.  Selective internalization of choline-phospholipids in Plasmodium falciparum parasitized human erythrocytes. , 1991, Biochimica et biophysica acta.

[242]  R. J. Howard,et al.  Modification of host cell membrane lipid composition by the intra-erythrocytic human malaria parasite Plasmodium falciparum. , 1991, The Biochemical journal.

[243]  J. Beesley,et al.  Mitochondria of mammalian Plasmodium spp. , 1991, Parasitology.

[244]  Nasir-ud-din,et al.  Presence of O-glycosylated glycoproteins in the Plasmodium falciparum parasite. , 1991, Carbohydrate research.

[245]  R. Ramasamy Studies on glycoproteins in the human malaria parasite Plasmodium falciparum — lectin binding properties and the possible carbohydrate‐protein linkage , 1987, Immunology and cell biology.

[246]  R. D. Walter Plasmodium falciparum: inhibition of dolichol kinase by mefloquine. , 1986, Experimental parasitology.

[247]  H. Ginsburg,et al.  Digestion of the host erythrocyte by malaria parasites is the primary target for quinoline-containing antimalarials. , 1986, Biochemical pharmacology.

[248]  A. Jung,et al.  Mechanisms of sulfadoxine resistance in Plasmodium falciparum. , 1986, Molecular and biochemical parasitology.

[249]  R. Ramasamy,et al.  Terminal galactose residues and the antigenicity of Plasmodium falciparum glycoproteins. , 1986, Molecular and biochemical parasitology.

[250]  H. Ginsburg,et al.  The mitochondrion of Plasmodium falciparum visualized by rhodamine 123 fluorescence. , 1985, The Journal of protozoology.

[251]  R. Ramasamy,et al.  A role for carbohydrate moieties in the immune response to malaria. , 1985, Journal of immunology.

[252]  H. Ginsburg,et al.  Effects of chloroquine on the feeding mechanism of the intraerythrocytic human malarial parasite Plasmodium falciparum. , 1984, The Journal of protozoology.

[253]  J. Blum,et al.  Absence of α‐Ketoglutarate Dehydrogenase Activity and Presence of CO2‐Fixing Activity in Plasmodium falciparum Grown In Vitro in Human Erythrocytes1 , 1984 .

[254]  M D Jensen,et al.  Culture of Plasmodium falciparum: the role of pH, glucose, and lactate. , 1983, The Journal of parasitology.

[255]  P. Rathod,et al.  Enzymes of purine and pyrimidine metabolism from the human malaria parasite, Plasmodium falciparum. , 1982, Molecular and biochemical parasitology.

[256]  I. Sherman,et al.  Biochemistry of Plasmodium (malarial parasites). , 1979, Microbiological reviews.

[257]  N. Bashan,et al.  The effect of Na+ and K+ on glycolytic enzymes: Differential response of pyruvate kinase from dog and human erythrocytes , 1975, FEBS letters.

[258]  H. McDaniel,et al.  Purification and Characterization of Phosphoenolpyruvate Carboxylase from Plasmodium berghei , 1972, Journal of bacteriology.

[259]  W. A. Siddiqui,et al.  Biosynthesis of coenzymes Q by malarial parasites. 2. Coenzyme Q synthesis in blood cultures of monkeys infected with malarial parasites (Plasmodium falciparum and P. knowlesi). , 1971, Journal of medicinal chemistry.

[260]  K. Lunan,et al.  Biosynthesis of ubiquinones by malarial parasites. I. Isolation of [14C]ubiquinones from cultures of rhesus monkey blood infected with Plasmodium knowlesi. , 1969, Biochemistry.

[261]  K. Kirk,et al.  Methionine transport in the malaria parasite Plasmodium falciparum. , 2011, International journal for parasitology.

[262]  M. Bogyo,et al.  Biochemical characterization of Plasmodium falciparum dipeptidyl aminopeptidase 1. , 2011, Molecular and biochemical parasitology.

[263]  J. E. Hyde,et al.  Vitamin B metabolism in Plasmodium falciparum as a source of drug targets. , 2010, Trends in parasitology.

[264]  Marcel Deponte,et al.  Plasmodium falciparum glyoxalase II: Theorell-Chance product inhibition patterns, rate-limiting substrate binding via Arg257/Lys260, and unmasking of acid-base catalysis , 2009, Biological chemistry.

[265]  H. Balaram,et al.  Kinetic and biochemical characterization of Plasmodium falciparum GMP synthetase. , 2008, The Biochemical journal.

[266]  J. Hyde Targeting purine and pyrimidine metabolism in human apicomplexan parasites. , 2007, Current drug targets.

[267]  R. D. Walter,et al.  Vitamin B1 de novo synthesis in the human malaria parasite Plasmodium falciparum depends on external provision of 4-amino-5-hydroxymethyl-2-methylpyrimidine , 2006, Biological chemistry.

[268]  C. West,et al.  Detection of cytoplasmic glycosylation associated with hydroxyproline. , 2006, Methods in enzymology.

[269]  S. Rahlfs,et al.  Plasmodium falciparum glutaredoxin-like proteins , 2005, Biological chemistry.

[270]  S. Rahlfs,et al.  Characterization of the glyoxalases of the malarial parasite Plasmodium falciparum and comparison with their human counterparts , 2005, Biological chemistry.

[271]  J. Golenser,et al.  Cytostatic effect of DL-α-difluoromethylornithine against Plasmodium falciparum and its reversal by diamines and spermidine , 2004, Parasitology Research.

[272]  A. Alcina,et al.  The Plasmodium falciparum fatty acyl-CoA synthetase family (PfACS) and differential stage-specific expression in infected erythrocytes. , 2003, Molecular and biochemical parasitology.

[273]  S. Krungkrai,et al.  Mitochondrial NADH dehydrogenase from Plasmodium falciparum and Plasmodium berghei. , 2002, Experimental parasitology.

[274]  R. Schirmer,et al.  Glutathione reductase and glutamate dehydrogenase of Plasmodium falciparum, the causative agent of tropical malaria. , 1996, European journal of biochemistry.

[275]  N. Lang-Unnasch,et al.  Purification and properties of Plasmodium falciparum malate dehydrogenase. , 1992, Molecular and biochemical parasitology.

[276]  J. Krungkrai,et al.  De novo and salvage biosynthesis of pteroylpentaglutamates in the human malaria parasite, Plasmodium falciparum. , 1989, Molecular and biochemical parasitology.

[277]  K. Van Dyke,et al.  Labelling of membrane glycoproteins of cultivated Plasmodium falciparum. , 1980, Bulletin of the World Health Organization.

[278]  K. Folkers,et al.  Occurrence of ubiquinones-8 and -9 in Plasmodium lophurae. , 1967, Internationale Zeitschrift fur Vitaminforschung. International journal of vitamin research. Journal international de vitaminologie.