Number and Stability of Relaxation Oscillations for Predator-Prey Systems with Small Death Rates

We consider planar systems of predator-prey models with small predator death rate $\epsilon>0$. Using geometric singular perturbation theory and Floquet theory, we derive characteristic functions that determines the location and the stability of relaxation oscillations as $\epsilon\to 0$. When the prey-isocline has a single interior local extremum, we prove that the system has a unique nontrivial periodic orbit, which forms a relaxation oscillation. For some systems with prey-isocline possessing two interior local extrema, we show that either the positive equilibrium is globally stable, or the system has exact two periodic orbits. In particular, for a predator-prey model with the Holling type IV functional response we derive a threshold value of the carrying capacity that separates these two outcomes. This result supports the so-called paradox of enrichment.

[1]  Huaiping Zhu,et al.  Multiple Focus and Hopf Bifurcations in a Predator-Prey System with Nonmonotonic Functional Response , 2006, SIAM J. Appl. Math..

[2]  Jitsuro Sugie Two-Parameter Bifurcation in a Predator–Prey System of Ivlev Type , 1998 .

[3]  Yang Kuang,et al.  Uniqueness of limit cycles in Gause-type models of predator-prey systems , 1988 .

[4]  P. Maesschalck,et al.  The entry-exit function and geometric singular perturbation theory , 2015, 1511.01815.

[5]  Shigui Ruan,et al.  Global Analysis in a Predator-Prey System with Nonmonotonic Functional Response , 2001, SIAM J. Appl. Math..

[6]  Sze-Bi Hsu,et al.  Global Stability for a Class of Predator-Prey Systems , 1995, SIAM J. Appl. Math..

[7]  Sze-Bi Hsu,et al.  On Global Stability of a Predator-Prey System , 1978 .

[8]  R M May,et al.  Stable Limit Cycles in Prey-Predator Populations , 1973, Science.

[9]  Robert Roussarie,et al.  Bifurcations of planar vector fields , 1990 .

[10]  Huaiping Zhu,et al.  Bifurcation Analysis of a Predator-Prey System with Nonmonotonic Functional Response , 2003, SIAM J. Appl. Math..

[11]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[12]  G. Wolkowicz,et al.  Sensitivity of the dynamics of the general Rosenzweig–MacArthur model to the mathematical form of the functional response: a bifurcation theory approach , 2018, Journal of mathematical biology.

[13]  Freddy Dumortier,et al.  Hilbert′s 16th Problem for Quadratic Vector Fields , 1994 .

[14]  Sze-Bi Hsu,et al.  Relaxation , 2021, Graduate Studies in Mathematics.

[15]  Anna Ghazaryan,et al.  Travelling waves in the Holling–Tanner model with weak diffusion , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  D M Wrzosek,et al.  Limit cycles in predator-prey models. , 1990, Mathematical biosciences.

[17]  Gail S. K. Wolkowicz,et al.  Bifurcation Analysis of a Predator-Prey System Involving Group Defence , 1988 .

[18]  C. Kuehn Multiple Time Scale Dynamics , 2015 .

[19]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[20]  Weishi Liu,et al.  Turning Points And Relaxation Oscillation Cycles in Simple Epidemic Models , 2016, SIAM J. Appl. Math..

[21]  Paul Waltman,et al.  Competing Predators , 2007 .

[22]  Dongmei Xiao,et al.  On the uniqueness and nonexistence of limit cycles for predator?prey systems , 2003 .

[23]  Shigui Ruan,et al.  Bifurcations in a predator–prey system of Leslie type with generalized Holling type III functional response☆ , 2014 .

[24]  G. Harrison,et al.  Global stability of predator-prey interactions , 1979 .

[25]  Stephen Schecter,et al.  Exchange lemmas 2: General Exchange Lemma , 2008 .

[26]  Robert E. Kooij,et al.  A predator-prey model with Ivlev's functional response , 1996 .

[27]  Robert M. May,et al.  Limit Cycles in Predator-Prey Communities , 1972, Science.

[28]  G S Wolkowicz,et al.  Predator-prey systems with group defence: The paradox of enrichment revisited , 1986, Bulletin of mathematical biology.

[29]  Ting-Hao Hsu On bifurcation delay: An alternative approach using Geometric Singular Perturbation Theory , 2016, 1604.04236.

[30]  Mason A. Porter,et al.  A Predator-2 Prey Fast-Slow Dynamical System for Rapid Predator Evolution , 2016, SIAM J. Appl. Dyn. Syst..

[31]  T. Sideris Ordinary Differential Equations and Dynamical Systems , 2013 .

[32]  Christopher Jones,et al.  Generalized exchange lemmas and orbits heteroclinic to invariant manifolds , 2009 .

[33]  Y. Kuang Nonuniqueness of Limit Cycles of Gause-Type Predator-Prey Systems , 1988 .

[34]  Rustam Singh,et al.  Simulating , 2012 .

[35]  J Hofbauer,et al.  Multiple limit cycles for predator-prey models. , 1990, Mathematical biosciences.

[36]  On maximum bifurcation delay in real planar singularly perturbed vector fields , 2008 .

[37]  M. Rosenzweig Paradox of Enrichment: Destabilization of Exploitation Ecosystems in Ecological Time , 1971, Science.

[38]  S. Antman Relaxation Oscillations In A Class Of Predator-prey Systems , 2015 .

[39]  Kuo-Shung Cheng,et al.  UNIQUENESS OF A LIMIT CYCLE FOR A PREDATOR-PREY SYSTEM* , 1981 .

[40]  Huaiping Zhu,et al.  Canard cycles for predator–prey systems with Holling types of functional response☆ , 2013 .