HOT: Hodge-optimized triangulations
暂无分享,去创建一个
Mathieu Desbrun | Pooran Memari | Fernando de Goes | Patrick Mullen | F. D. Goes | Patrick Mullen | M. Desbrun | Pooran Memari
[1] Chenglei Yang,et al. On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.
[2] Yiying Tong,et al. Discrete differential forms for computational modeling , 2005, SIGGRAPH Courses.
[3] Leo Grady,et al. Discrete Calculus - Applied Analysis on Graphs for Computational Science , 2010 .
[4] D. Glickenstein. Geometric triangulations and discrete Laplacians on manifolds , 2005, math/0508188.
[5] V. T. Rajan,et al. Optimality of the Delaunay triangulation in Rd , 1991, SCG '91.
[6] F. Mémoli,et al. A spectral notion of Gromov–Wasserstein distance and related methods , 2011 .
[7] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[8] T. Dey,et al. Theory of a Practical Delaunay Meshing Algorithm for a Large Class of Domains , 2009 .
[9] Damrong Guoy,et al. Well-Centered Triangulation , 2008, SIAM J. Sci. Comput..
[10] Ellen Kuhl,et al. Diamond elements: a finite element/discrete‐mechanics approximation scheme with guaranteed optimal convergence in incompressible elasticity , 2007, International Journal for Numerical Methods in Engineering.
[11] D. Pedoe,et al. Geometry, a comprehensive course , 1988 .
[12] J. Blair Perot,et al. Discrete calculus methods for diffusion , 2007, J. Comput. Phys..
[13] Scott O. Wilson. Cochain algebra on manifolds and convergence under refinement , 2007 .
[14] James R. Munkres,et al. Elements of algebraic topology , 1984 .
[15] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[16] Pierre Alliez,et al. Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation , 2009, ACM Trans. Graph..
[17] Mark Meyer,et al. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.
[18] Peter Schröder,et al. An algorithm for the construction of intrinsic delaunay triangulations with applications to digital geometry processing , 2006, Computing.
[19] Pierre Alliez,et al. Optimizing Voronoi Diagrams for Polygonal Finite Element Computations , 2010, IMR.
[20] Christopher Batty,et al. Tetrahedral Embedded Boundary Methods for Accurate and Flexible Adaptive Fluids , 2010, Comput. Graph. Forum.
[21] C. Villani. Optimal Transport: Old and New , 2008 .
[22] Mathieu Desbrun,et al. Barycentric coordinates for convex sets , 2007, Adv. Comput. Math..
[23] Eitan Grinspun,et al. Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.
[24] Mariette Yvinec,et al. Variational tetrahedral meshing , 2005, ACM Trans. Graph..
[25] Jonathan Richard Shewchuk,et al. What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.
[26] Qiang Du,et al. Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..
[27] I. Daubechies,et al. Surface Comparison with Mass Transportation , 2009, 0912.3488.
[28] Ulrich Pinkall,et al. Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..
[29] J. van Leeuwen,et al. Discrete and Computational Geometry , 2002, Lecture Notes in Computer Science.
[30] Anil N. Hirani,et al. Discrete exterior calculus , 2005, math/0508341.
[31] B. Lévy,et al. Lp Centroidal Voronoi Tessellation and its applications , 2010, ACM Trans. Graph..
[32] B. Auchmann,et al. A geometrically defined discrete hodge operator on simplicial cells , 2006, IEEE Transactions on Magnetics.
[33] Yiying Tong,et al. Stable, circulation-preserving, simplicial fluids , 2006, SIGGRAPH Courses.