HOT: Hodge-optimized triangulations

We introduce Hodge-optimized triangulations (HOT), a family of well-shaped primal-dual pairs of complexes designed for fast and accurate computations in computer graphics. Previous work most commonly employs barycentric or circumcentric duals; while barycentric duals guarantee that the dual of each simplex lies within the simplex, circumcentric duals are often preferred due to the induced orthogonality between primal and dual complexes. We instead promote the use of weighted duals ("power diagrams"). They allow greater flexibility in the location of dual vertices while keeping primal-dual orthogonality, thus providing a valuable extension to the usual choices of dual by only adding one additional scalar per primal vertex. Furthermore, we introduce a family of functionals on pairs of complexes that we derive from bounds on the errors induced by diagonal Hodge stars, commonly used in discrete computations. The minimizers of these functionals, called HOT meshes, are shown to be generalizations of Centroidal Voronoi Tesselations and Optimal Delaunay Triangulations, and to provide increased accuracy and flexibility for a variety of computational purposes.

[1]  Chenglei Yang,et al.  On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.

[2]  Yiying Tong,et al.  Discrete differential forms for computational modeling , 2005, SIGGRAPH Courses.

[3]  Leo Grady,et al.  Discrete Calculus - Applied Analysis on Graphs for Computational Science , 2010 .

[4]  D. Glickenstein Geometric triangulations and discrete Laplacians on manifolds , 2005, math/0508188.

[5]  V. T. Rajan,et al.  Optimality of the Delaunay triangulation in Rd , 1991, SCG '91.

[6]  F. Mémoli,et al.  A spectral notion of Gromov–Wasserstein distance and related methods , 2011 .

[7]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[8]  T. Dey,et al.  Theory of a Practical Delaunay Meshing Algorithm for a Large Class of Domains , 2009 .

[9]  Damrong Guoy,et al.  Well-Centered Triangulation , 2008, SIAM J. Sci. Comput..

[10]  Ellen Kuhl,et al.  Diamond elements: a finite element/discrete‐mechanics approximation scheme with guaranteed optimal convergence in incompressible elasticity , 2007, International Journal for Numerical Methods in Engineering.

[11]  D. Pedoe,et al.  Geometry, a comprehensive course , 1988 .

[12]  J. Blair Perot,et al.  Discrete calculus methods for diffusion , 2007, J. Comput. Phys..

[13]  Scott O. Wilson Cochain algebra on manifolds and convergence under refinement , 2007 .

[14]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[15]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[16]  Pierre Alliez,et al.  Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation , 2009, ACM Trans. Graph..

[17]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[18]  Peter Schröder,et al.  An algorithm for the construction of intrinsic delaunay triangulations with applications to digital geometry processing , 2006, Computing.

[19]  Pierre Alliez,et al.  Optimizing Voronoi Diagrams for Polygonal Finite Element Computations , 2010, IMR.

[20]  Christopher Batty,et al.  Tetrahedral Embedded Boundary Methods for Accurate and Flexible Adaptive Fluids , 2010, Comput. Graph. Forum.

[21]  C. Villani Optimal Transport: Old and New , 2008 .

[22]  Mathieu Desbrun,et al.  Barycentric coordinates for convex sets , 2007, Adv. Comput. Math..

[23]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.

[24]  Mariette Yvinec,et al.  Variational tetrahedral meshing , 2005, ACM Trans. Graph..

[25]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[26]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[27]  I. Daubechies,et al.  Surface Comparison with Mass Transportation , 2009, 0912.3488.

[28]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[29]  J. van Leeuwen,et al.  Discrete and Computational Geometry , 2002, Lecture Notes in Computer Science.

[30]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[31]  B. Lévy,et al.  Lp Centroidal Voronoi Tessellation and its applications , 2010, ACM Trans. Graph..

[32]  B. Auchmann,et al.  A geometrically defined discrete hodge operator on simplicial cells , 2006, IEEE Transactions on Magnetics.

[33]  Yiying Tong,et al.  Stable, circulation-preserving, simplicial fluids , 2006, SIGGRAPH Courses.