MACE nano-texture process applicable for both single- and multi-crystalline diamond-wire sawn Si solar cells

[1]  Zhipeng Huang,et al.  Metal‐Assisted Chemical Etching of Silicon: A Review , 2011, Advanced materials.

[2]  X. Mei,et al.  Fabrication of broadband antireflective black metal surfaces with ultra-light-trapping structures by picosecond laser texturing and chemical fluorination , 2016 .

[3]  Shinji Yae,et al.  Formation of porous silicon by metal particle enhanced chemical etching in HF solution and its application for efficient solar cells , 2003 .

[4]  M. Shen,et al.  18.45%‐Efficient Multi‐Crystalline Silicon Solar Cells with Novel Nanoscale Pseudo‐Pyramid Texture , 2014 .

[5]  Kang L. Wang,et al.  Efficiency improved by acid texturization for multi-crystalline silicon solar cells , 2011 .

[6]  Xiaodong Su,et al.  Next-generation multi-crystalline silicon solar cells: Diamond-wire sawing, nano-texture and high efficiency , 2015 .

[7]  Surface texture and optical properties of crystalline silicon substrates , 2015 .

[8]  P. Panek,et al.  Time efficient texturization of multicrystalline silicon in the HF/HNO3 solutions and its effect on optoelectronic parameters of solar cells , 2014 .

[9]  Gwonjong Yu,et al.  Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE) , 2011 .

[10]  T. Koschwitz,et al.  Textural development of SiC and diamond wire sawed sc-silicon wafer , 2012 .

[11]  E. Mazur,et al.  MICROSTRUCTURING OF SILICON WITH FEMTOSECOND LASER PULSES , 1998 .

[12]  Peng Wang,et al.  Thin Czochralski silicon solar cells based on diamond wire sawing technology , 2012 .

[13]  N. Zin Recombination-free reactive ion etch for high efficiency silicon solar cells , 2017 .

[14]  Taeksoo Ji,et al.  Rate controlled metal assisted chemical etching to fabricate vertical and uniform Si nanowires , 2016, SPIE OPTO.

[15]  G. Jung,et al.  Repeatable Silicon Nanowires Transfer to Flexible Substrate by Two-Step Metal Assisted Chemical Etching , 2017 .

[16]  Joshua M. Pearce,et al.  Economic Advantages of Dry-Etched Black Silicon in Passivated Emitter Rear Cell (PERC) Photovoltaic Manufacturing , 2018, Energies.

[17]  N. Geyer,et al.  Metal-assisted electrochemical etching of silicon , 2010, Nanotechnology.

[18]  Qidai Chen,et al.  Fabrication of Black Silicon With Thermostable Infrared Absorption by Femtosecond Laser , 2016, IEEE Photonics Journal.

[19]  V. Dřínek,et al.  Silicon nanowires grown on metal substrates via self-catalyst mechanism , 2015 .

[20]  C. Cachet-Vivier,et al.  Tunable Surface Structuration of Silicon by Metal Assisted Chemical Etching with Pt Nanoparticles under Electrochemical Bias. , 2016, ACS applied materials & interfaces.

[21]  R. Alcubilla,et al.  Analysis of the Atomic Layer Deposited Al2O3 field-effect passivation in black silicon , 2015 .

[22]  Yan Wang,et al.  Nanostructure formation and passivation of large-area black silicon for solar cell applications. , 2012, Small.

[23]  M. Sentis,et al.  Femtosecond laser for black silicon and photovoltaic cells , 2008, SPIE LASE.

[24]  S. Danyluk,et al.  Comparative Analysis of Fracture Strength of Slurry and Diamond Wire Sawn Multicrystalline Silicon Solar Wafers , 2013 .

[25]  S. Melkote,et al.  Diamond Wire Sawing of Solar Silicon Wafers: A Sustainable Manufacturing Alternative to Loose Abrasive Slurry Sawing , 2018 .

[26]  X. Song,et al.  One-step-MACE nano/microstructures for high-efficient large-size multicrystalline Si solar cells , 2015 .

[27]  Hans Joachim Möller,et al.  Basic Mechanisms and Models of Multi‐Wire Sawing , 2004 .

[28]  Kuan-Syun Wang,et al.  Highly sensitive and reproducible SERS substrates of bilayer Au and Ag nano-island arrays by thermal evaporation deposition , 2018, Surface and Coatings Technology.

[29]  P. He,et al.  Electrochemical deposition of silver in room-temperature ionic liquids and its surface-enhanced Raman scattering effect. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[30]  T. Ono,et al.  Ion transport by gating voltage to nanopores produced via metal-assisted chemical etching method , 2018, Nanotechnology.

[31]  Anti-reflection layers fabricated by a one-step copper-assisted chemical etching with inverted pyramidal structures intermediate between texturing and nanopore-type black silicon , 2014 .

[32]  Andrew Blakers,et al.  Texturing of polycrystalline silicon , 1996 .

[33]  M. Shen,et al.  Stable and efficient multi-crystalline n+p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer , 2015 .

[34]  Johan Nijs,et al.  High-efficiency low-cost integral screen-printing multicrystalline silicon solar cells , 2002 .

[35]  Lang Zhou,et al.  A study of mottling phenomenon on textured multicrystalline silicon wafers and its potential effects on solar cell performance , 2014 .

[36]  R. Alcubilla,et al.  Recombination processes in passivated boron-implanted black silicon emitters , 2017 .

[37]  Soonwoo Kwon,et al.  Effect of surface morphology on screen printed solar cells , 2010 .

[38]  Lang Zhou,et al.  On the nature and removal of saw marks on diamond wire sawn multicrystalline silicon wafers , 2014 .

[39]  L. Deng,et al.  Porous silicon templates prepared by Cu-assisted chemical etching , 2014 .

[40]  Martin A. Green,et al.  High performance light trapping textures for monocrystalline silicon solar cells , 2001 .

[41]  J. Acker,et al.  Comparison of diamond wire cut and silicon carbide slurry processed silicon wafer surfaces after acidic texturisation , 2014 .

[42]  Hans Joachim Möller,et al.  Multicrystalline silicon for solar cells , 2005 .

[43]  Thomas Käsebier,et al.  Black Silicon Photovoltaics , 2012, Photonics Europe.

[44]  D. Flood,et al.  Fabrication and characteristics of black silicon for solar cell applications: An overview , 2014 .

[45]  Miko Elwenspoek,et al.  The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control , 1995 .

[46]  Junling Wang,et al.  Enhanced visible light photocatalytic properties of TiO2 thin films on the textured multicrystalline silicon wafers , 2015 .

[47]  Ernst-Bernhard Kley,et al.  Terahertz emission from black silicon , 2008 .

[48]  Mohamed A. Swillam,et al.  Efficient fabrication methodology of wide angle black silicon for energy harvesting applications , 2017 .

[49]  S. Dutta,et al.  Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication , 2007 .

[50]  Wenhui Ma,et al.  Controllable nano-texturing of diamond wire sawing polysilicon wafers through low-cost copper catalyzed chemical etching , 2018, Materials Letters.

[51]  Vinodh Shanmugam,et al.  Influence of random pyramid surface texture on silver screen-printed contact formation for monocrystalline silicon wafer solar cells , 2015 .

[52]  Claude Lévy-Clément,et al.  Metal-assisted chemical etching of silicon in HF–H2O2 , 2008 .

[53]  Hele Savin,et al.  Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. , 2015, Nature nanotechnology.

[54]  X. Pi,et al.  Constructing submicron textures on mc-Si solar cells via copper-catalyzed chemical etching , 2017 .

[55]  Y. Kondo,et al.  Characterization of polycrystalline silicon wafers for solar cells sliced with novel fixed‐abrasive wire , 2010 .

[56]  Vikram Kumar,et al.  Fabrication of silicon nanowire arrays based solar cell with improved performance , 2011 .

[57]  B. Sopori,et al.  Characterizing damage on Si wafer surfaces cut by slurry and diamond wire sawing , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[58]  Joshua M. Pearce,et al.  Effects of silver catalyst concentration in metal assisted chemical etching of silicon , 2018, Materials Letters.

[59]  J. Yi,et al.  Black silicon layer formation for application in solar cells , 2006 .

[60]  H. Savin,et al.  Surface passivation of black silicon phosphorus emitters with atomic layer deposited SiO2/Al2O3 stacks , 2017 .

[61]  Harold E. Bennett,et al.  Formation and Growth of Tarnish on Evaporated Silver Films , 1969 .

[62]  Jihun Oh,et al.  Efficient nanostructured ‘black’ silicon solar cell by copper‐catalyzed metal‐assisted etching , 2015 .

[63]  Martin Stutzmann,et al.  Black nonreflecting silicon surfaces for solar cells , 2006 .

[64]  Xusheng Wang,et al.  Novel texturing process for diamond-wire-sawn single-crystalline silicon solar cell , 2015 .

[65]  Hao-Chih Yuan,et al.  An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. , 2012, Nature nanotechnology.

[66]  E. Çeli̇k,et al.  Determination of micro sized texturing and nano sized etching procedure to enhance optical properties of n-type single crystalline silicon wafer , 2017, Journal of Materials Science: Materials in Electronics.

[67]  Xiuling Li,et al.  Metal-assisted chemical etching in HF/H2O2 produces porous silicon , 2000 .

[68]  Zhipeng Huang,et al.  Metal-assisted chemical etching of silicon and nanotechnology applications , 2014 .

[69]  A. Gawlik,et al.  Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. , 2009, Nano letters.