Self‐Doped and Crown‐Ether Functionalized Fullerene as Cathode Buffer Layer for Highly‐Efficient Inverted Polymer Solar Cells

F. Zhao, Dr. L. Jiang, Prof. C. Wang Key Laboratory of Molecular Nanostructure and Nanotechnology Institute of Chemistry Chinese Academy of Sciences 100190 Beijing , China E-mail: crwang@iccas.ac.cn F. Zhao University of Chinese Academy of Sciences 100049 Beijing , China Z. Wang, Dr. J. Zhang, Dr. X. Zhu, Dr. Y. Zhang, J. Fang, Dr. D. Deng, Prof. Z. Wei National Center for Nanoscience and Technology 100190 Beijing , China E-mail: weizx@nanoctr.cn Prof. Y. Li Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences 100190 Beijing , China

[1]  Jiang Huang,et al.  10.4% Power Conversion Efficiency of ITO‐Free Organic Photovoltaics Through Enhanced Light Trapping Configuration , 2015 .

[2]  Jianqi Zhang,et al.  Conjugated Polymer-Small Molecule Alloy Leads to High Efficient Ternary Organic Solar Cells. , 2015, Journal of the American Chemical Society.

[3]  Wei Chen,et al.  High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes , 2015, Nature Communications.

[4]  Yongfang Li,et al.  Crown-ether functionalized fullerene as a solution-processable cathode buffer layer for high performance perovskite and polymer solar cells , 2015 .

[5]  Feng Liu,et al.  Single-junction polymer solar cells with high efficiency and photovoltage , 2015, Nature Photonics.

[6]  C. Chang,et al.  High-Performance Flexible Tandem Polymer Solar Cell Employing a Novel Cross-Linked Conductive Fullerene as an Electron Transport Layer , 2015 .

[7]  He Yan,et al.  Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells , 2014, Nature Communications.

[8]  T. Emrick,et al.  Fulleropyrrolidine interlayers: Tailoring electrodes to raise organic solar cell efficiency , 2014, Science.

[9]  A. Jen,et al.  Suppressed Charge Recombination in Inverted Organic Photovoltaics via Enhanced Charge Extraction by Using a Conductive Fullerene Electron Transport Layer , 2014, Advanced materials.

[10]  Menglan Lv,et al.  Self n-doped [6,6]-phenyl-C61-butyric acid 2-((2-(trimethylammonium)ethyl)-(dimethyl)ammonium) ethyl ester diiodides as a cathode interlayer for inverted polymer solar cells , 2014 .

[11]  Boyuan Qi,et al.  Perylene diimides: a thickness-insensitive cathode interlayer for high performance polymer solar cells , 2014 .

[12]  A. Jen,et al.  In situ doping and crosslinking of fullerenes to form efficient and robust electron-transporting layers for polymer solar cells , 2014 .

[13]  Liming Ding,et al.  Methanofullerenes, C60(CH2)n (n = 1, 2, 3), as building blocks for high-performance acceptors used in organic solar cells. , 2014, Organic letters.

[14]  Yu-Shan Cheng,et al.  Fullerene Derivative‐Doped Zinc Oxide Nanofilm as the Cathode of Inverted Polymer Solar Cells with Low‐Bandgap Polymer (PTB7‐Th) for High Performance , 2013, Advanced materials.

[15]  Liming Ding,et al.  Thermo-cleavable fullerene materials as buffer layers for efficient polymer solar cells , 2013 .

[16]  Chunru Wang,et al.  Enhancing the performance of polymer photovoltaic cells by using an alcohol soluble fullerene derivative as the interfacial layer. , 2013, ACS applied materials & interfaces.

[17]  Chain‐Shu Hsu,et al.  Formation of Nanostructured Fullerene Interlayer through Accelerated Self-Assembly and Cross-Linking of Trichlorosilane Moieties Leading to Enhanced Efficiency of Photovoltaic Cells , 2013 .

[18]  Jie Zhang,et al.  Efficient Solution‐Processed Small‐Molecule Solar Cells with Inverted Structure , 2013, Advanced materials.

[19]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[20]  Yu-Shan Cheng,et al.  Multiple functionalities of polyfluorene grafted with metal ion-intercalated crown ether as an electron transport layer for bulk-heterojunction polymer solar cells: optical interference, hole blocking, interfacial dipole, and electron conduction. , 2012, Journal of the American Chemical Society.

[21]  Fei Huang,et al.  Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte , 2012 .

[22]  G. Bazan,et al.  Amino N‐Oxide Functionalized Conjugated Polymers and their Amino‐Functionalized Precursors: New Cathode Interlayers for High‐Performance Optoelectronic Devices , 2012 .

[23]  F. Huang,et al.  Highly Efficient Inverted Polymer Solar Cells Based on an Alcohol Soluble Fullerene Derivative Interfacial Modification Material , 2012 .

[24]  Talha M. Khan,et al.  A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics , 2012, Science.

[25]  A. Jen,et al.  Functional fullerenes for organic photovoltaics , 2012 .

[26]  Yongfang Li Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. , 2012, Accounts of chemical research.

[27]  A. Jen,et al.  Enhanced Open‐Circuit Voltage in High Performance Polymer/Fullerene Bulk‐Heterojunction Solar Cells by Cathode Modification with a C60 Surfactant , 2012 .

[28]  Yong Cao,et al.  Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill Factor in Polymer Solar Cells , 2011, Advanced materials.

[29]  Alan J. Heeger,et al.  Identifying a Threshold Impurity Level for Organic Solar Cells: Enhanced First‐Order Recombination Via Well‐Defined PC84BM Traps in Organic Bulk Heterojunction Solar Cells , 2011 .

[30]  S. Chen,et al.  Creating a pseudometallic state of K+ by intercalation into 18-crown-6 grafted on polyfluorene as electron injection layer for high performance PLEDs with oxygen- and moisture-stable Al cathode. , 2011, Journal of the American Chemical Society.

[31]  A. Heeger,et al.  Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. , 2011, Journal of the American Chemical Society.

[32]  Yongfang Li,et al.  Fullerene derivative acceptors for high performance polymer solar cells. , 2011, Physical chemistry chemical physics : PCCP.

[33]  Yongfang Li,et al.  Combination of indene-C60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells. , 2010, Journal of the American Chemical Society.

[34]  Alan J. Heeger,et al.  Recombination in polymer-fullerene bulk heterojunction solar cells , 2010 .

[35]  Fei Huang,et al.  Origin of the enhanced open-circuit voltage in polymer solar cells via interfacial modification using conjugated polyelectrolytes , 2010 .

[36]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[37]  Yong Cao,et al.  Enhanced open-circuit voltage in polymer solar cells , 2009 .

[38]  Yong Cao,et al.  Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. , 2009, Accounts of chemical research.

[39]  Alex K.-Y. Jen,et al.  Interfacial modification to improve inverted polymer solar cells , 2008 .

[40]  William R. Salaneck,et al.  Fermi-level pinning at conjugated polymer interfaces , 2006 .

[41]  A. Kahn,et al.  Energy level alignment at interfaces of organic semiconductor heterostructures , 1998 .