Differential Excitability and Modulation of Striatal Medium Spiny Neuron Dendrites

The loss of striatal dopamine (DA) in Parkinson's disease (PD) models triggers a cell-type-specific reduction in the density of dendritic spines in D2 receptor-expressing striatopallidal medium spiny neurons (D2 MSNs). How the intrinsic properties of MSN dendrites, where the vast majority of DA receptors are found, contribute to this adaptation is not clear. To address this question, two-photon laser scanning microscopy (2PLSM) was performed in patch-clamped mouse MSNs identified in striatal slices by expression of green fluorescent protein (eGFP) controlled by DA receptor promoters. These studies revealed that single backpropagating action potentials (bAPs) produced more reliable elevations in cytosolic Ca2+ concentration at distal dendritic locations in D2 MSNs than at similar locations in D1 receptor-expressing striatonigral MSNs (D1 MSNs). In both cell types, the dendritic Ca2+ entry elicited by bAPs was enhanced by pharmacological blockade of Kv4, but not Kv1 K+ channels. Local application of DA depressed dendritic bAP-evoked Ca2+ transients, whereas application of ACh increased these Ca2+ transients in D2 MSNs, but not in D1 MSNs. After DA depletion, bAP-evoked Ca2+ transients were enhanced in distal dendrites and spines in D2 MSNs. Together, these results suggest that normally D2 MSN dendrites are more excitable than those of D1 MSNs and that DA depletion exaggerates this asymmetry, potentially contributing to adaptations in PD models.

[1]  D. Grandy,et al.  Interactions between Metabotropic Glutamate 5 and Adenosine A2A Receptors in Normal and Parkinsonian Mice , 2005, The Journal of Neuroscience.

[2]  D. Surmeier,et al.  Kv1.2-containing K+ channels regulate subthreshold excitability of striatal medium spiny neurons. , 2004, Journal of neurophysiology.

[3]  D. Paré,et al.  Differential impact of miniature synaptic potentials on the soma and dendrites of pyramidal neurons in vivo. , 1997, Journal of neurophysiology.

[4]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[5]  D. Surmeier,et al.  M1 Muscarinic Acetylcholine Receptor in Cultured Rat Neostriatum Regulates Phosphoinositide Hydrolysis , 1990, Journal of neurochemistry.

[6]  P. Calabresi,et al.  Intracellular studies on the dopamine-induced firing inhibition of neostriatal neurons in vitro: Evidence for D1 receptor involvement , 1987, Neuroscience.

[7]  Shigeo Watanabe,et al.  Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  B. Sakmann,et al.  Action potential initiation and propagation in rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[9]  Jeffrey C Magee,et al.  Phosphorylation‐dependent differences in the activation properties of distal and proximal dendritic Na+ channels in rat CA1 hippocampal neurons , 2002, The Journal of physiology.

[10]  K. I. Blum,et al.  Experience-Dependent Changes in Extracellular Spike Amplitude May Reflect Regulation of Dendritic Action Potential Back-Propagation in Rat Hippocampal Pyramidal Cells , 2001, The Journal of Neuroscience.

[11]  D. Surmeier,et al.  Association of CaV1.3 L-Type Calcium Channels with Shank , 2005, The Journal of Neuroscience.

[12]  Matthew F Nolan,et al.  Activity-Dependent Regulation of HCN Pacemaker Channels by Cyclic AMP Signaling through Dynamic Allosteric Coupling , 2002, Neuron.

[13]  J. Bargas,et al.  D1 Receptor Activation Enhances Evoked Discharge in Neostriatal Medium Spiny Neurons by Modulating an L-Type Ca2+ Conductance , 1997, The Journal of Neuroscience.

[14]  Nathan W. Gouwens,et al.  The Contribution of Resurgent Sodium Current to High-Frequency Firing in Purkinje Neurons: An Experimental and Modeling Study , 2003, The Journal of Neuroscience.

[15]  D. Johnston,et al.  Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. , 1995, Science.

[16]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[17]  Bernardo L Sabatini,et al.  Timing and Location of Synaptic Inputs Determine Modes of Subthreshold Integration in Striatal Medium Spiny Neurons , 2007, The Journal of Neuroscience.

[18]  M L Hines,et al.  Neuron: A Tool for Neuroscientists , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[19]  N. Spruston,et al.  Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. , 1992, Journal of neurophysiology.

[20]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[21]  Charles J. Wilson,et al.  The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  P. Greengard,et al.  Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons , 1995, Neuron.

[23]  J. Bargas,et al.  D2 Dopamine Receptors in Striatal Medium Spiny Neurons Reduce L-Type Ca2+ Currents and Excitability via a Novel PLCβ1–IP3–Calcineurin-Signaling Cascade , 2000, The Journal of Neuroscience.

[24]  Scott H Chandler,et al.  Striatal potassium channel dysfunction in Huntington's disease transgenic mice. , 2005, Journal of neurophysiology.

[25]  B. Sabatini,et al.  State-Dependent Calcium Signaling in Dendritic Spines of Striatal Medium Spiny Neurons , 2004, Neuron.

[26]  D. Surmeier,et al.  Dichotomous Anatomical Properties of Adult Striatal Medium Spiny Neurons , 2008, The Journal of Neuroscience.

[27]  P. Jonas,et al.  Distal initiation and active propagation of action potentials in interneuron dendrites. , 2000, Science.

[28]  Sung-Cherl Jung,et al.  Regulation of Dendritic Excitability by Activity-Dependent Trafficking of the A-Type K+ Channel Subunit Kv4.2 in Hippocampal Neurons , 2007, Neuron.

[29]  Keiichi Nagata,et al.  Kv3.4 subunits enhance the repolarizing efficiency of Kv3.1 channels in fast-spiking neurons , 2003, Nature Neuroscience.

[30]  D. Johnston,et al.  Axonal Action-Potential Initiation and Na+ Channel Densities in the Soma and Axon Initial Segment of Subicular Pyramidal Neurons , 1996, The Journal of Neuroscience.

[31]  D. Johnston,et al.  Slow Recovery from Inactivation of Na+ Channels Underlies the Activity-Dependent Attenuation of Dendritic Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1997, The Journal of Neuroscience.

[32]  D. Surmeier,et al.  Delayed Rectifier Currents in Rat Globus Pallidus Neurons Are Attributable to Kv2.1 and Kv3.1/3.2 K+ Channels , 1999, The Journal of Neuroscience.

[33]  H. C. Cromwell,et al.  Neuromodulatory actions of dopamine on synaptically‐evoked neostriatal responses in slices , 1996, Synapse.

[34]  D. James Surmeier,et al.  G-Protein-Coupled Receptor Modulation of Striatal CaV1.3 L-Type Ca Channels Is Dependent on a Shank-Binding Domain , 2005 .

[35]  D. Surmeier,et al.  Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons , 2007, Nature Neuroscience.

[36]  G. Buzsáki,et al.  Dendritic Spikes Are Enhanced by Cooperative Network Activity in the Intact Hippocampus , 1998, The Journal of Neuroscience.

[37]  Shiaoching Gong,et al.  A gene expression atlas of the central nervous system based on bacterial artificial chromosomes , 2003, Nature.

[38]  Christian Derst,et al.  Differential distribution of individual subunits of strongly inwardly rectifying potassium channels (Kir2 family) in rat brain. , 2005, Brain research. Molecular brain research.

[39]  M. Häusser,et al.  Propagation of action potentials in dendrites depends on dendritic morphology. , 2001, Journal of neurophysiology.

[40]  M. Segal,et al.  Formation of dendritic spines in cultured striatal neurons depends on excitatory afferent activity , 2003, The European journal of neuroscience.

[41]  Dopamine-mediated gene regulation in the striatum. , 1998, Advances in pharmacology.

[42]  D James Surmeier,et al.  HCN2 and HCN1 Channels Govern the Regularity of Autonomous Pacemaking and Synaptic Resetting in Globus Pallidus Neurons , 2004, The Journal of Neuroscience.

[43]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[44]  D. Durand,et al.  Electrotonic parameters of rat dentate granule cells measured using short current pulses and HRP staining. , 1983, Journal of neurophysiology.

[45]  A. Harvey,et al.  Twenty years of dendrotoxins. , 2001, Toxicon : official journal of the International Society on Toxinology.

[46]  D. Surmeier,et al.  D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons , 2007, Trends in Neurosciences.

[47]  W. N. Ross,et al.  IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. , 1996, Journal of neurophysiology.

[48]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[49]  D. Johnston,et al.  K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons , 1997, Nature.

[50]  A. Levey,et al.  Distribution of m1-m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype- specific antibodies , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[52]  W. N. Ross,et al.  Frequency-dependent propagation of sodium action potentials in dendrites of hippocampal CA1 pyramidal neurons. , 1995, Journal of neurophysiology.

[53]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[54]  D. Johnston,et al.  Neuromodulation of dendritic action potentials. , 1999, Journal of neurophysiology.

[55]  F. Gonon,et al.  Cortical Inputs and GABA Interneurons Imbalance Projection Neurons in the Striatum of Parkinsonian Rats , 2006, The Journal of Neuroscience.

[56]  A. Sampson,et al.  Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models , 2006, Nature Neuroscience.

[57]  M. Häusser,et al.  Dendritic coincidence detection of EPSPs and action potentials , 2001, Nature Neuroscience.

[58]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[59]  I. Kopin The pharmacology of Parkinson's disease therapy: an update. , 1993, Annual review of pharmacology and toxicology.

[60]  D. Surmeier,et al.  Muscarinic receptors modulate N-, P-, and L-type Ca2+ currents in rat striatal neurons through parallel pathways , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  P. Groves,et al.  Three-dimensional structure of dendritic spines in the rat neostriatum , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  R. C. Cannon,et al.  Distribution of spontaneous currents along the somato-dendritic axis of rat hippocampal CA1 pyramidal neurons , 2000, Neuroscience.

[63]  B. Rudy,et al.  Molecular Diversity of K+ Channels , 1999, Annals of the New York Academy of Sciences.

[64]  D. Johnston,et al.  Protein Kinase Modulation of Dendritic K+ Channels in Hippocampus Involves a Mitogen-Activated Protein Kinase Pathway , 2002, The Journal of Neuroscience.

[65]  G. Stuart,et al.  Excitatory Actions of GABA in the Cortex , 2003, Neuron.

[66]  Daniel Johnston,et al.  Regulation of back-propagating action potentials in hippocampal neurons , 1999, Current Opinion in Neurobiology.

[67]  G. Stuart,et al.  Backpropagation of Physiological Spike Trains in Neocortical Pyramidal Neurons: Implications for Temporal Coding in Dendrites , 2000, The Journal of Neuroscience.

[68]  Andreas T. Schaefer,et al.  Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. , 2003, Journal of neurophysiology.

[69]  William A Catterall,et al.  Transmitter Modulation of Slow, Activity-Dependent Alterations in Sodium Channel Availability Endows Neurons with a Novel Form of Cellular Plasticity , 2003, Neuron.

[70]  G. Lahoste,et al.  Striatal Fos expression is indicative of dopamine D1/D2 synergism and receptor supersensitivity. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[71]  M Migliore,et al.  Dendritic potassium channels in hippocampal pyramidal neurons , 2000, The Journal of physiology.

[72]  D. Johnston,et al.  Distance-dependent modifiable threshold for action potential back-propagation in hippocampal dendrites. , 2003, Journal of neurophysiology.

[73]  M Migliore,et al.  Computer simulations of morphologically reconstructed CA3 hippocampal neurons. , 1995, Journal of neurophysiology.

[74]  J. David Sweatt,et al.  Activation of p42 Mitogen-activated Protein Kinase in Hippocampal Long Term Potentiation* , 1996, The Journal of Biological Chemistry.

[75]  J. Bargas,et al.  Cholinergic Modulation of Neostriatal Output: a Functional Antagonism between Different Types of Muscarinic Receptors Materials and Methods , 1999 .

[76]  J. Bolam,et al.  Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  M. Häusser,et al.  Initiation and spread of sodium action potentials in cerebellar purkinje cells , 1994, Neuron.

[78]  C. Colbert,et al.  Subthreshold inactivation of Na+ and K+ channels supports activity-dependent enhancement of back-propagating action potentials in hippocampal CA1. , 2001, Journal of neurophysiology.

[79]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[80]  Weixing Shen,et al.  Cholinergic Suppression of KCNQ Channel Currents Enhances Excitability of Striatal Medium Spiny Neurons , 2005, The Journal of Neuroscience.

[81]  D. Surmeier,et al.  Coordinated expression of muscarinic receptor messenger RNAs in striatal medium spiny neurons , 2001, Neuroscience.

[82]  G. Buzsáki,et al.  Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity‐dependent phase‐precession of action potentials , 1998, Hippocampus.

[83]  D. Surmeier,et al.  Kv4.2 mRNA Abundance and A-Type K+ Current Amplitude Are Linearly Related in Basal Ganglia and Basal Forebrain Neurons , 2000, The Journal of Neuroscience.

[84]  J. Magee Dendritic mechanisms of phase precession in hippocampal CA1 pyramidal neurons. , 2001, Journal of neurophysiology.

[85]  Joel L. Davis,et al.  Single neuron computation , 1992 .

[86]  D. Johnston,et al.  Downregulation of Transient K+ Channels in Dendrites of Hippocampal CA1 Pyramidal Neurons by Activation of PKA and PKC , 1998, The Journal of Neuroscience.

[87]  B. Bloch,et al.  Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  D. Johnston,et al.  Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. , 1998, Annual review of physiology.

[89]  C. Cepeda,et al.  Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. , 1998, Journal of neurophysiology.