Effect of brake power distribution on dynamic programming technique in plug-in series hybrid electric vehicle control strategy

Plug-in Hybrid Electric Vehicle (PHEV) control strategies have received much attention in recent years for their significant impact in reducing the overall fuel cost. Dynamic programming (DP) is a control method which calculates every possible outcome at each step to find out the optimal supervisory control trajectory. In this work, DP is applied to a PHEV control strategy using a backward looking powertrain model while demonstrating the effect of considering the regenerative braking power distribution. A case study with a Series PHEV model is considered using DP based powertrain control strategy with different drive cycles to demonstrate the importance of considering brake power distribution on the cost-to-go function of these vehicles. The simulation results show that there is significant deviation from the optimal trajectory especially in heavy stop and go traffic situations while brake power distribution is considered.