A 16-kV HBM RF ESD Protection Codesign for a 1-mW CMOS Direct Conversion Receiver Operating in the 2.4-GHz ISM Band

A decreasing-sized π -model electrostatic discharge (ESD) protection structure is presented and applied to protect against ESD stresses at the RF input pad of an ultra-low power CMOS front-end operating in the 2.4-GHz industrial-scientific-medical band. The proposed ESD protection structure is composed of a pair of ESD devices located near the RF pad, another pair close to the core circuit, and a high-quality integrated inductor connecting these two pairs. This structure can sustain a human body-model ESD level higher than 16 kV and a machine-model ESD level higher than 1 kV without degrading the RF performance of the front-end. A combined on-wafer transmission line pulse and RF test methodology for RF circuits is also presented confirming previous results. The front-end implements a zero-IF receiver. It has been implemented in a standard 2P6M 0.18-μm CMOS process. It exhibits a voltage gain of 24 dB and a single-sideband noise figure of 8.4 dB, which make it suitable for most of the 2.4-GHz wireless short-range communication transceivers. The power consumption is only 1.06 mW from a 1.2-V voltage supply.

[1]  B. Kleveland,et al.  Distributed ESD protection for high-speed integrated circuits , 2000, IEEE Electron Device Letters.

[2]  Kaustav Banerjee,et al.  Analysis and design of distributed ESD protection circuits for high-speed mixed-signal and RF ICs , 2002 .

[3]  W. Kluge,et al.  A Fully Integrated 2.4-GHz IEEE 802.15.4-Compliant Transceiver for ZigBee™ Applications , 2006, IEEE Journal of Solid-State Circuits.

[4]  Jon Barth,et al.  TLP calibration, correlation, standards, and new techniques , 2001 .

[5]  Paul Leroux,et al.  A 1.3dB NF CMOS LNA for GPS with 3kV HBM ESD–protection , 2002 .

[6]  Ming-Dou Ker,et al.  Optimization of broadband RF performance and ESD robustness by π-model distributed ESD protection scheme , 2004, 2004 Electrical Overstress/Electrostatic Discharge Symposium.

[7]  Chien-Ming Lee,et al.  ESD protection design for 900-MHz RF receiver with 8-kV HBM ESD robustness , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[8]  Ming-Hsien Tsai,et al.  A low noise amplifier co-designed with ESD protection circuit in 65-nm CMOS , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[9]  Ming-Dou Ker,et al.  ESD protection design for 1- to 10-GHz distributed amplifier in CMOS technology , 2005, IEEE Transactions on Microwave Theory and Techniques.

[10]  S. Voldman ESD : RF Technology and Circuits , 2006 .

[11]  Thierry Parra,et al.  A 5.4 mW/0.07 mm$^{2}$ 2.4 GHz Front-End Receiver in 90 nm CMOS for IEEE 802.15.4 WPAN Standard , 2008, IEEE Journal of Solid-State Circuits.

[12]  Sang-Gug Lee,et al.  CMOS low-noise amplifier design optimization techniques , 2004, IEEE Transactions on Microwave Theory and Techniques.

[13]  Jose-Luis Gonzalez Jimenez,et al.  Process and Temperature Compensation for RF Low-Noise Amplifiers and Mixers , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  Heinrich Wolf,et al.  A Dedicated TLP Set-Up to Investigate the ESD Robustness of RF Elements and Circuits , 2005, Microelectron. Reliab..

[15]  Y. Tsividis,et al.  A 2.4-GHz ISM-Band Sliding-IF Receiver With a 0.5-V Supply , 2008, IEEE Journal of Solid-State Circuits.

[16]  Roc Berenguer,et al.  A low-power RF front-end for 2.5 GHz receivers , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[17]  Ming-Dou Ker,et al.  A novel LC-tank ESD protection design for Giga-Hz RF circuits , 2003, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2003.

[18]  E. Rosenbaum,et al.  Diode-based tuned ESD protection for 5.25-GHz CMOS LNAs , 2005, 2005 Electrical Overstress/Electrostatic Discharge Symposium.

[19]  Sang-Gug Lee,et al.  Low noise and high gain CMOS down conversion mixer , 2004, 2004 International Conference on Communications, Circuits and Systems (IEEE Cat. No.04EX914).

[20]  Trung-Kien Nguyen,et al.  A Low-Power RF Direct-Conversion Receiver/Transmitter for 2.4-GHz-Band IEEE 802.15.4 Standard in 0.18- $\mu{\hbox {m}}$ CMOS Technology , 2006, IEEE Transactions on Microwave Theory and Techniques.

[21]  Ming-Dou Ker,et al.  Decreasing-size distributed ESD protection scheme for broad-band RF circuits , 2005, IEEE Transactions on Microwave Theory and Techniques.

[22]  Ming-Dou Ker,et al.  Optimization of broadband RF performance and ESD robustness by π-model distributed ESD protection scheme , 2006 .

[23]  Robert W. Dutton,et al.  A noise optimization technique for integrated low-noise amplifiers , 2002, IEEE J. Solid State Circuits.

[24]  Ming-Dou Ker,et al.  A 5-GHz Differential Low-Noise Amplifier With High Pin-to-Pin ESD Robustness in a 130-nm CMOS Process , 2009, IEEE Transactions on Microwave Theory and Techniques.

[25]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[26]  Josep Samitier,et al.  A physical frequency-dependent compact model for RF integrated inductors , 2002 .

[27]  M. Ker Whole-chip ESD protection design with efficient VDD-to-VSS ESD clamp circuits for submicron CMOS VLSI , 1999 .

[28]  A. Ziel Noise in solid state devices and circuits , 1986 .

[29]  Elyse Rosenbaum,et al.  Cancellation technique to provide ESD protection for multi-GHz RF inputs , 2003 .

[30]  Taeksang Song,et al.  A Low-Power 2.4-GHz Current-Reused Receiver Front-End and Frequency Source for Wireless Sensor Network , 2007, IEEE Journal of Solid-State Circuits.

[31]  J.-P. Raskin,et al.  A 2.4-GHz Fully Integrated ESD-Protected Low-Noise Amplifier in 130-nm PD SOI CMOS Technology , 2007, IEEE Transactions on Microwave Theory and Techniques.

[32]  Elyse Rosenbaum,et al.  Comprehensive ESD protection for RF inputs , 2005, 2003 Electrical Overstress/Electrostatic Discharge Symposium.

[33]  Pui-In Mak,et al.  Design of an ESD-Protected Ultra-Wideband LNA in Nanoscale CMOS for Full-Band Mobile TV Tuners , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[34]  M. Steyaert,et al.  High-performance 5.2 GHz LNA with on-chip inductor to provide ESD protection , 2001 .

[35]  J. Ryynanen,et al.  2.4-GHz receiver for sensor applications , 2005, IEEE Journal of Solid-State Circuits.

[36]  J. Ryynanen,et al.  2.4-GHz receiver for sensor applications , 2004, Proceedings of the 30th European Solid-State Circuits Conference.

[37]  Chirn Chye Boon,et al.  A fully integrated 2.4-GHz receiver in a 0.18-μm CMOS process for low-power body-area-network applications , 2007, 2007 IEEE Biomedical Circuits and Systems Conference.

[38]  P. Wambacq,et al.  A Fully Integrated 7.3 kV HBM ESD-Protected Transformer-Based 4.5–6 GHz CMOS LNA , 2009, IEEE Journal of Solid-State Circuits.

[39]  Kwyro Lee,et al.  A 2.4-GHz Low-Power Low-IF Receiver and Direct-Conversion Transmitter in 0.18-$\mu{\hbox {m}}$ CMOS for IEEE 802.15.4 WPAN Applications , 2007, IEEE Transactions on Microwave Theory and Techniques.