The Playful Machine - Theoretical Foundation and Practical Realization of Self-Organizing Robots

1.Introduction.- 2.Self-Organization in Nature and Machines.- 3.The Sensorimotor Loop. - 4.Principles of Self-Regulation - Homeostasis . - 5.A General Approach to Self-Organization - Homeokinesis.- 6.From Fixed-Point Flows to Hysteresis Oscillators.- 7.Symmetries, Resonances, and Second Order Hysteresis.- 8.Low Dimensional Robotic Systems.- 9.Model Learning.- 10.High-Dimensional Robotic Systems.- 11.Facing the Unknown - Homeokinesis in a New Representation*.- 12.Guided Self-Organization - A First Realization.- 13.Channeling Self-Organization.- 14.Reward-Driven Self-Organization.- 15.Algorithmic Implementation.- 16.The LPZROBOTS Simulator.- 17.Discussion and Perspectives.- List of Figures.- List of Videos.- List of Experiments.- References.- Index.

[1]  Poramate Manoonpong,et al.  Neural preprocessing and control of reactive walking machines - towards versatile artificial perception-action systems , 2006, Cognitive Technologies.

[2]  G. Turrigiano Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same , 1999, Trends in Neurosciences.

[3]  Sven Koenig,et al.  Building Terrain-Covering Ant Robots: A Feasibility Study , 2004, Auton. Robots.

[4]  L. Yaeger Computational Genetics, Physiology, Metabolism, Neural Systems, Learning, Vision, and Behavior or PolyWorld: Life in a New Context , 1997 .

[5]  Ralf Der,et al.  Let it roll - Emerging Sensorimotor Coordination in a Spherical Robot , 2006 .

[6]  Marco Dorigo,et al.  Self-organisation and communication in groups of simulated and physical robots , 2006, Biological Cybernetics.

[7]  Jürgen Schmidhuber,et al.  Driven by Compression Progress: A Simple Principle Explains Essential Aspects of Subjective Beauty, Novelty, Surprise, Interestingness, Attention, Curiosity, Creativity, Art, Science, Music, Jokes , 2008, ABiALS.

[8]  D M Wolpert,et al.  Multiple paired forward and inverse models for motor control , 1998, Neural Networks.

[9]  Jeffrey L. Krichmar,et al.  Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines , 2001, Complex..

[10]  Richard Sproat,et al.  Morphology and computation , 1992 .

[11]  F. Pasemann DYNAMICS OF A SINGLE MODEL NEURON , 1993 .

[12]  Mikhail Prokopenko,et al.  Design vs. Self-organization , 2008, Advances in Applied Self-organizing Systems.

[13]  J. Michael Herrmann,et al.  Taming the Beast: Guided Self-organization of Behavior in Autonomous Robots , 2010, SAB.

[14]  Yuan F. Zheng,et al.  Distal learning applied to biped robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[15]  S. Nelson,et al.  Hebb and homeostasis in neuronal plasticity , 2000, Current Opinion in Neurobiology.

[16]  E de Margerie,et al.  Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV , 2007, Bioinspiration & biomimetics.

[17]  Jürgen Schmidhuber,et al.  A possibility for implementing curiosity and boredom in model-building neural controllers , 1991 .

[18]  Rolf Pfeifer,et al.  How the body shapes the way we think - a new view on intelligence , 2006 .

[19]  Marco Dorigo,et al.  Path formation in a robot swarm , 2008, Swarm Intelligence.

[20]  R. Pfeifer,et al.  Self-Organization, Embodiment, and Biologically Inspired Robotics , 2007, Science.

[21]  Richard S. Sutton,et al.  Reinforcement Learning: Past, Present and Future , 1998, SEAL.

[22]  S. Nelson,et al.  Homeostatic plasticity in the developing nervous system , 2004, Nature Reviews Neuroscience.

[23]  Georg Martius,et al.  Goal-Oriented Control of Self-Organizing Behavior in Autonomous Robots , 2010 .

[24]  H. Maturana,et al.  Autopoiesis and Cognition : The Realization of the Living (Boston Studies in the Philosophy of Scie , 1980 .

[25]  Keyan Zahedi,et al.  AN EVOLVED NEURAL NETWORK FOR FAST QUADRUPEDAL LOCOMOTION , 2007 .

[26]  Irving R Epstein,et al.  Oscillatory Turing patterns in reaction-diffusion systems with two coupled layers. , 2003, Physical review letters.

[27]  Stefan Schaal,et al.  A Generalized Path Integral Control Approach to Reinforcement Learning , 2010, J. Mach. Learn. Res..

[28]  Kenneth O. Stanley,et al.  A Hypercube-Based Encoding for Evolving Large-Scale Neural Networks , 2009, Artificial Life.

[29]  S. Hochreiter,et al.  REINFORCEMENT DRIVEN INFORMATION ACQUISITION IN NONDETERMINISTIC ENVIRONMENTS , 1995 .

[30]  Stefan Schaal,et al.  Natural Actor-Critic , 2003, Neurocomputing.

[31]  F. Pasemann A simple chaotic neuron , 1997 .

[32]  G. Tononi,et al.  Sleep function and synaptic homeostasis. , 2006, Sleep medicine reviews.

[33]  Pierre-Yves Oudeyer,et al.  Intrinsic Motivation Systems for Autonomous Mental Development , 2007, IEEE Transactions on Evolutionary Computation.

[34]  Ralf Der,et al.  Homeokinesis - A new principle to back up evolution with learning , 1999 .

[35]  Andy Ruina,et al.  A Bipedal Walking Robot with Efficient and Human-Like Gait , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[36]  James A. Reggia,et al.  Guided self-organizing particle systems for basic problem solving , 2007 .

[37]  Gregor Schöner,et al.  Dynamics of behavior: Theory and applications for autonomous robot architectures , 1995, Robotics Auton. Syst..

[38]  Ralf Der,et al.  Learning to feel the physics of a body , 2005, International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06).

[39]  Ralf Der,et al.  Self-organized acquisition of situated behaviors , 2001, Theory in Biosciences.

[40]  Ralf Der,et al.  Rocking Stamper and Jumping Snakes from a Dynamical Systems Approach to Artificial Life , 2006, Adapt. Behav..

[41]  F. Pasemann Discrete dynamics of two neuron networks , 1993 .

[42]  R. Pfeifer,et al.  Morphological computation for adaptive behavior and cognition , 2006 .

[43]  J. Ventre-Dominey,et al.  Vestibular integration in human cerebral cortex contributes to spatial remapping , 2007, Neuropsychologia.

[44]  James L. McClelland,et al.  Autonomous Mental Development by Robots and Animals , 2001, Science.

[45]  B. Kendall Nonlinear Dynamics and Chaos , 2001 .

[46]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[47]  Luc Steels,et al.  The Autotelic Principle , 2003, Embodied Artificial Intelligence.

[48]  Gregor Schöner,et al.  Self-calibration based on invariant view recognition: Dynamic approach to navigation , 1997, Robotics Auton. Syst..

[49]  Steffen Wischmann,et al.  Neural dynamics of social behavior: an evolutionary and mechanistic perspective on communication, cooperation, and competition among situated agents , 2008 .

[50]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[51]  J. Michael Herrmann,et al.  Tipping the scales: guidance and intrinsically motivated behavior , 2011, ECAL.

[52]  Ralf Der,et al.  From Motor Babbling to Purposive Actions: Emerging Self-exploration in a Dynamical Systems Approach to Early Robot Development , 2006, SAB.

[53]  Jeffrey L. Elman,et al.  Learning and Evolution in Neural Networks , 1994, Adapt. Behav..

[54]  Tom Ziemke,et al.  On the role of emotion in biological and robotic autonomy , 2008, Biosyst..

[55]  D. Wolpert,et al.  Internal models in the cerebellum , 1998, Trends in Cognitive Sciences.

[56]  Rolf Pfeifer,et al.  Morphological Computation - Connecting Brain, Body, and Environment , 2006, Australian Conference on Artificial Intelligence.

[57]  Frank Pasemann,et al.  SO(2)-Networks as Neural Oscillators , 2003, IWANN.

[58]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[59]  Rolf Pfeifer,et al.  Understanding intelligence , 2020, Inequality by Design.

[60]  M. Prokopenko Guided self‐organization , 2009, HFSP journal.

[61]  Giulio Sandini,et al.  Developmental robotics: a survey , 2003, Connect. Sci..

[62]  Olaf Sporns,et al.  Evolving Coordinated Behavior by Maximizing Information Structure , 2006 .

[63]  Yasuo Kuniyoshi,et al.  Exploration of Natural Dynamics through Resonance and Chaos , 2006, IAS.

[64]  E. A. Dipaolo,et al.  Homeostatic adaptation to inversion of the visual field and other sensorimotor disruptions , 2000 .

[65]  Ralf Der,et al.  Guided Self-organisation for Autonomous Robot Development , 2007, ECAL.

[66]  A. Maslow Motivation and Personality , 1954 .

[67]  Laure Pisella,et al.  The contribution of spatial remapping impairments to unilateral visual neglect , 2004, Neuroscience & Biobehavioral Reviews.

[68]  R. Der,et al.  True autonomy from self-organized adaptivity , 2002 .

[69]  Doina Precup,et al.  An information-theoretic approach to curiosity-driven reinforcement learning , 2012, Theory in Biosciences.

[70]  Stefano Nolfi,et al.  Synchronization and Gait Adaptation in Evolving Hexapod Robots , 2006, SAB.

[71]  Marc Timme,et al.  Self-organized adaptation of a simple neural circuit enables complex robot behaviour , 2011, ArXiv.

[72]  Frank Pasemann,et al.  Reflex-oscillations in evolved single leg neurocontrollers for walking machines , 2007, Natural Computing.

[73]  Kenneth L. Artis Design for a Brain , 1961 .

[74]  F. Pasemann Complex dynamics and the structure of small neural networks , 2002, Network.

[75]  Christoph Salge,et al.  Information-Driven Organization of Visual Receptive Fields , 2009, Adv. Complex Syst..

[76]  E. D. Paolo,et al.  Organismically-inspired robotics: homeostatic adaptation and teleology beyond the closed sensorimotor loop , 2003 .

[77]  Ralf Der,et al.  Higher Coordination With Less Control—A Result of Information Maximization in the Sensorimotor Loop , 2009, Adapt. Behav..

[78]  Chris J. Hinde,et al.  An improved representation for evolving programs , 2009, Genetic Programming and Evolvable Machines.

[79]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[80]  Olaf Sporns,et al.  Methods for quantifying the informational structure of sensory and motor data , 2007, Neuroinformatics.