Irinophore C™, a lipid-based nanoparticulate formulation of irinotecan, is more effective than free irinotecan when used to treat an orthotopic glioblastoma model.

[1]  F. Szoka,et al.  Anti-tumor activity of liposome encapsulated fluoroorotic acid as a single agent and in combination with liposome irinotecan. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[2]  M. Bally,et al.  Vascular normalization in orthotopic glioblastoma following intravenous treatment with lipid-based nanoparticulate formulations of irinotecan (Irinophore C™), doxorubicin (Caelyx®) or vincristine , 2011, BMC Cancer.

[3]  Ping Wang,et al.  Novel sulfobutyl ether cyclodextrin gradient leads to highly active liposomal irinotecan formulation , 2011, The Journal of pharmacy and pharmacology.

[4]  A. Schönthal,et al.  Effective conversion of irinotecan to SN-38 after intratumoral drug delivery to an intracranial murine glioma model in vivo. Laboratory investigation. , 2011, Journal of neurosurgery.

[5]  T. Cloughesy FDA accelerated approval benefits glioblastoma. , 2010, The Lancet. Oncology.

[6]  M. Dewhirst,et al.  Effect of Pazopanib on Tumor Microenvironment and Liposome Delivery , 2010, Molecular Cancer Therapeutics.

[7]  T. Mikkelsen,et al.  Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[8]  P. Wen,et al.  A "vascular normalization index" as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. , 2009, Cancer research.

[9]  R. McLendon,et al.  Phase II trial of temozolomide (TMZ) plus irinotecan (CPT-11) in adults with newly diagnosed glioblastoma multiforme before radiotherapy , 2009, Journal of Neuro-Oncology.

[10]  William A Banks,et al.  Characteristics of compounds that cross the blood-brain barrier , 2009, BMC neurology.

[11]  J. Gallo,et al.  Differential effect of sunitinib on the distribution of temozolomide in an orthotopic glioma model. , 2009, Neuro-oncology.

[12]  F. Atyabi,et al.  Preparation of pegylated nano-liposomal formulation containing SN-38: In vitro characterization and in vivo biodistribution in mice , 2009, Acta pharmaceutica.

[13]  Li Shi,et al.  Novel irinotecan-loaded liposome using phytic acid with high therapeutic efficacy for colon tumors. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[14]  R. Jain,et al.  Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[15]  R. Mirimanoff,et al.  Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. , 2009, The Lancet. Oncology.

[16]  P. Shende,et al.  Formulation and Comparative Characterization of Chitosan, Gelatin, and Chitosan–Gelatin-Coated Liposomes of CPT-11–HCl , 2009, Drug development and industrial pharmacy.

[17]  H. Maeda,et al.  Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[18]  H. Friedman,et al.  Experience with irinotecan for the treatment of malignant glioma. , 2009, Neuro-oncology.

[19]  M. Bally,et al.  Irinophore C, a Novel Nanoformulation of Irinotecan, Alters Tumor Vascular Function and Enhances the Distribution of 5-Fluorouracil and Doxorubicin , 2008, Clinical Cancer Research.

[20]  D. Hanahan,et al.  Modes of resistance to anti-angiogenic therapy , 2008, Nature Reviews Cancer.

[21]  Dai Fukumura,et al.  Imaging angiogenesis and the microenvironment   , 2008, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[22]  Xiao-Feng Sun,et al.  Anticancer effect of SN-38 on colon cancer cell lines with different metastatic potential. , 2008, Oncology reports.

[23]  R. Kerbel,et al.  Antiangiogenic and anticolorectal cancer effects of metronomic irinotecan chemotherapy alone and in combination with semaxinib , 2008, British Journal of Cancer.

[24]  R. Kerbel,et al.  A pharmacokinetic and pharmacodynamic study on metronomic irinotecan in metastatic colorectal cancer patients , 2008, British Journal of Cancer.

[25]  Patricia Kraft,et al.  Novel Delivery of SN38 Markedly Inhibits Tumor Growth in Xenografts, Including a Camptothecin-11–Refractory Model , 2008, Clinical Cancer Research.

[26]  M. Bally,et al.  A novel liposomal irinotecan formulation with significant anti-tumour activity: use of the divalent cation ionophore A23187 and copper-containing liposomes to improve drug retention. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[27]  M. Bally,et al.  Irinophore C: A Liposome Formulation of Irinotecan with Substantially Improved Therapeutic Efficacy against a Panel of Human Xenograft Tumors , 2008, Clinical Cancer Research.

[28]  John W. Park,et al.  Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy. , 2006, Cancer research.

[29]  C. Kuo,et al.  Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. , 2006, American journal of physiology. Heart and circulatory physiology.

[30]  A. Matsumura,et al.  Anti-angiogenic effects of SN38 (active metabolite of irinotecan): inhibition of hypoxia-inducible factor 1 alpha (HIF-1α)/vascular endothelial growth factor (VEGF) expression of glioma and growth of endothelial cells , 2005, Journal of Cancer Research and Clinical Oncology.

[31]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[32]  W. Guo,et al.  A simple and sensitive LC/MS/MS assay for 7-ethyl-10-hydroxycamptothecin (SN-38) in mouse plasma and tissues: application to pharmacokinetic study of liposome entrapped SN-38 (LE-SN38). , 2005, Journal of pharmaceutical and biomedical analysis.

[33]  R. Jain Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy , 2005, Science.

[34]  Lei Xu,et al.  Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. , 2004, Cancer cell.

[35]  A. Brandes,et al.  Second-line chemotherapy with irinotecan plus carmustine in glioblastoma recurrent or progressive after first-line temozolomide chemotherapy: a phase II study of the Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[36]  S. Clarke,et al.  Inhibition of acetylcholinesterase in patients receiving irinotecan (camptothecin‐11) , 2004, Clinical pharmacology and therapeutics.

[37]  J. Gallo,et al.  Pharmacodynamic-Mediated Effects of the Angiogenesis Inhibitor SU5416 on the Tumor Disposition of Temozolomide in Subcutaneous and Intracerebral Glioma Xenograft Models , 2003, Journal of Pharmacology and Experimental Therapeutics.

[38]  R. McLendon,et al.  Phase II study of irinotecan (CPT-11) in children with high-risk malignant brain tumors: the Duke experience. , 2002 .

[39]  Rakesh K. Jain,et al.  Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy , 2001, Nature Medicine.

[40]  J. Thevelein,et al.  Phosphoinositides in yeast: genetically tractable signalling. , 2001, FEMS yeast research.

[41]  M. Menger,et al.  Vascular Microenvironment in Gliomas , 2000, Journal of Neuro-Oncology.

[42]  Y. Sadzuka Effective prodrug liposome and conversion to active metabolite. , 2000, Current drug metabolism.

[43]  S. Ghosh,et al.  Cholesteryl ester hydrolase in human monocyte/macrophage: cloning, sequencing, and expression of full-length cDNA. , 2000, Physiological genomics.

[44]  S. Hirota,et al.  Effective Irinotecan (CPT‐11)‐containing Liposomes: Intraliposomal Conversion to the Active Metabolite SN‐38 , 1999, Japanese journal of cancer research : Gann.

[45]  P. Houghton,et al.  Altered irinotecan and SN-38 disposition after intravenous and oral administration of irinotecan in mice bearing human neuroblastoma xenografts. , 1998, Clinical cancer research : an official journal of the American Association for Cancer Research.

[46]  R. Jain,et al.  Role of tumor vascular architecture in nutrient and drug delivery: an invasion percolation-based network model. , 1996, Microvascular research.

[47]  F. Roquet,et al.  Preclinical evaluation of CPT-11 and its active metabolite SN-38. , 1996, Seminars in oncology.

[48]  J. Robert,et al.  Kinetics of the in vivo interconversion of the carboxylate and lactone forms of irinotecan (CPT-11) and of its metabolite SN-38 in patients. , 1994, Cancer research.

[49]  R K Jain,et al.  Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. , 1994, Cancer research.

[50]  T. Burke,et al.  The structural basis of camptothecin interactions with human serum albumin: impact on drug stability. , 1994, Journal of medicinal chemistry.

[51]  P. Steerenberg,et al.  Release of doxorubicin from peritoneal macrophages exposed in vivo to doxorubicin-containing liposomes. , 1988, Biochimica et biophysica acta.

[52]  L. Mayer,et al.  Vesicles of variable sizes produced by a rapid extrusion procedure. , 1986, Biochimica et biophysica acta.

[53]  D. Groothuis,et al.  Regional blood flow in ethylnitrosourea‐induced brain tumors , 1983, Annals of neurology.

[54]  D. Bigner,et al.  Regional measurements of blood flow in experimental RG-2 rat gliomas. , 1983, Cancer research.

[55]  P. Lantos,et al.  The vasculature of experimental brain tumours Part 1. A sequential light and electron microscope study of angiogenesis , 1981, Journal of the Neurological Sciences.

[56]  K. Hellmann,et al.  Vascular changes in tumours after treatment with ICRF 159. , 1971, British journal of pharmacology.

[57]  P. Potter,et al.  Organ-specific carboxylesterase profiling identifies the small intestine and kidney as major contributors of activation of the anticancer prodrug CPT-11. , 2011, Biochemical pharmacology.

[58]  Peter Vajkoczy,et al.  Vascular microenvironment in gliomas. , 2004, Cancer treatment and research.

[59]  C. Takimoto,et al.  Plasma and cerebrospinal fluid pharmacokinetics of 9-aminocamptothecin (9-AC), irinotecan (CPT-11), and SN-38 in nonhuman primates , 1998, Cancer Chemotherapy and Pharmacology.

[60]  S. Joel,et al.  © 1999 Cancer Research Campaign Article no. bjoc.1999.6843 , 2022 .