THE COMPUTATION OF WAVELET‐GALERKIN APPROXIMATION ON A BOUNDED INTERVAL

This paper describes exact evaluations of various finite integrals whose integrands involve products of Daubechies' compactly supported wavelets and their derivatives and/or integrals. These finite integrals play an essential role in the wavelet-Galerkin approximation of differential or integral equations on a bounded interval.

[1]  S. Mallat,et al.  A wavelet based space-time adaptive numerical method for partial differential equations , 1990 .

[2]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[3]  Andreas Rieder,et al.  A Wavelet Approach to Robust Multilevel Solvers for Anisotropic Elliptic Problems , 1994 .

[4]  Leland Jameson,et al.  On the wavelet based differentiation matrix , 1993 .

[5]  C. Chui,et al.  Wavelets on a Bounded Interval , 1992 .

[6]  A. Latto,et al.  Les ondelettes à support compact et la solution numérique de l ’ équation de Burgers , .

[7]  C. Micchelli,et al.  Using the refinement equation for evaluating integrals of wavelets , 1993 .

[8]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[9]  E Weinan,et al.  Hierarchical method for elliptic problems using wavelet , 1992 .

[10]  Raymond O. Wells,et al.  Wavelet calculus and finite difference operators , 1994 .

[11]  S. Jaffard,et al.  Orthonormal wavelets, analysis of operators, and applications to numerical analysis , 1993 .

[12]  Jinchao Xu,et al.  Galerkin-wavelet methods for two-point boundary value problems , 1992 .

[13]  G. Beylkin,et al.  On the representation of operators in bases of compactly supported wavelets , 1992 .

[14]  Sam Qian,et al.  Wavelets and the Numerical Solution of Partial Differential Equations , 1993 .

[15]  Sam Qian,et al.  Wavelets and the numerical solution of boundary value problems , 1993 .

[16]  I. G. Rosen,et al.  Wavelet based approximation in the optimal control of distributed parameter systems , 1991 .

[17]  Chyi Hwang,et al.  A wavelet-Galerkin method for solving population balance equations , 1996 .

[18]  John R. Williams,et al.  Wavelet–Galerkin solutions for one‐dimensional partial differential equations , 1994 .