Global conformal surface parameterization

We solve the problem of computing global conformal parameterizations for surfaces with nontrivial topologies. The parameterization is global in the sense that it preserves the conformality everywhere except for a few points, and has no boundary of discontinuity. We analyze the structure of the space of all global conformal parameterizations of a given surface and find all possible solutions by constructing a basis of the underlying linear solution space. This space has a natural structure solely determined by the surface geometry, so our computing result is independent of connectivity, insensitive to resolution, and independent of the algorithms to discover it. Our algorithm is based on the properties of gradient fields of conformal maps, which are closedness, harmonity, conjugacy, duality and symmetry. These properties can be formulated by sparse linear systems, so the method is easy to implement and the entire process is automatic. We also introduce a novel topological modification method to improve the uniformity of the parameterization. Based on the global conformal parameterization of a surface, we can construct a conformal atlas and use it to build conformal geometry images which have very accurate reconstructed normals.

[1]  W. T. Tutte Convex Representations of Graphs , 1960 .

[2]  勉 斎藤,et al.  D. Vandenberg : Being and Education, An Essay in Existential Phenomenology.(Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1971) , 1974 .

[3]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[4]  Chee-Keng Yap,et al.  Computational complexity of combinatorial surfaces , 1990, SCG '90.

[5]  David Eppstein,et al.  Polynomial-size nonobtuse triangulation of polygons , 1991, SCG '91.

[6]  Anne Verroust-Blondet,et al.  Interactive texture mapping , 1993, SIGGRAPH.

[7]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[8]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[9]  Tamal K. Dey,et al.  A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection , 1995, Discret. Comput. Geom..

[10]  W. Stuetzle,et al.  HIERARCHICAL COMPUTATION OF PL HARMONIC EMBEDDINGS , 1997 .

[11]  Bruno Lévy,et al.  Non-distorted texture mapping for sheared triangulated meshes , 1998, SIGGRAPH.

[12]  David A. Rottenberg,et al.  Quasi-Conformally Flat Mapping the Human Cerebellum , 1999, MICCAI.

[13]  Kenneth Stephenson The approximation of conformal structures via circle packing , 1999 .

[14]  Ron Kikinis,et al.  Conformal Geometry and Brain Flattening , 1999, MICCAI.

[15]  Tamal K. Dey,et al.  Transforming Curves on Surfaces , 1999, J. Comput. Syst. Sci..

[16]  Guillermo Sapiro,et al.  Conformal Surface Parameterization for Texture Mapping , 1999 .

[17]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[18]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[19]  Anne Verroust-Blondet,et al.  Computing a canonical polygonal schema of an orientable triangulated surface , 2001, SCG '01.

[20]  Alla Sheffer,et al.  Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening , 2001, Engineering with Computers.

[21]  Bruno Lévy,et al.  Constrained texture mapping for polygonal meshes , 2001, SIGGRAPH.

[22]  Sariel Har-Peled,et al.  Cutting a Surface into a Disk , 2002, SoCG 2002.

[23]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[24]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[25]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[26]  Jeff Erickson,et al.  Optimally Cutting a Surface into a Disk , 2002, SCG '02.

[27]  Pedro V. Sander,et al.  Signal-Specialized Parametrization , 2002, Rendering Techniques.

[28]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[29]  Alla Sheffer,et al.  Fundamentals of spherical parameterization for 3D meshes , 2003, ACM Trans. Graph..

[30]  Xianfeng Gu,et al.  Parametrization for surfaces with arbitrary topologies , 2003 .

[31]  Paul M. Thompson,et al.  Genus zero surface conformal mapping and its application to brain surface mapping , 2004, IEEE Transactions on Medical Imaging.