An otx cis-regulatory module: a key node in the sea urchin endomesoderm gene regulatory network.

[1]  E. Davidson Genomic Regulatory Systems: Development and Evolution , 2005 .

[2]  E. Davidson,et al.  Developmental gene regulatory network architecture across 500 million years of echinoderm evolution , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[3]  L. Hood,et al.  Regulatory gene networks and the properties of the developmental process , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Eric H Davidson,et al.  Patchy interspecific sequence similarities efficiently identify positive cis-regulatory elements in the sea urchin. , 2002, Developmental biology.

[5]  Eric H Davidson,et al.  Modeling DNA sequence-based cis-regulatory gene networks. , 2002, Developmental biology.

[6]  Eric H Davidson,et al.  New computational approaches for analysis of cis-regulatory networks. , 2002, Developmental biology.

[7]  E. Davidson,et al.  New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization. , 2002, Developmental biology.

[8]  Eric H Davidson,et al.  A regulatory gene network that directs micromere specification in the sea urchin embryo. , 2002, Developmental biology.

[9]  Eric H Davidson,et al.  A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. , 2002, Developmental biology.

[10]  L. Hood,et al.  A Genomic Regulatory Network for Development , 2002, Science.

[11]  R. Angerer,et al.  Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes. , 2001, Development.

[12]  Sanjay Gupta,et al.  Stage-Specific Modulation of IFN-Regulatory Factor 4 Function by Krüppel-Type Zinc Finger Proteins1 , 2001, The Journal of Immunology.

[13]  E. Davidson,et al.  Correct Expression of spec2a in the sea urchin embryo requires both Otx and other cis-regulatory elements. , 2001, Developmental biology.

[14]  C. Tunyaplin,et al.  Characterization of the B lymphocyte-induced maturation protein-1 (Blimp-1) gene, mRNA isoforms and basal promoter. , 2000, Nucleic acids research.

[15]  William R. Atchley,et al.  Molecular Evolution of the GATA Family of Transcription Factors: Conservation Within the DNA-Binding Domain , 2000, Journal of Molecular Evolution.

[16]  W. Klein,et al.  Requirement of SpOtx in cell fate decisions in the sea urchin embryo and possible role as a mediator of beta-catenin signaling. , 1999, Developmental biology.

[17]  D. McClay,et al.  Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo. , 1999, Development.

[18]  W. Klein,et al.  β-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo , 1998 .

[19]  E. Davidson,et al.  Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. , 1998, Science.

[20]  L. Angerer,et al.  Two Otx proteins generated from multiple transcripts of a single gene in Strongylocentrotus purpuratus. , 1997, Developmental biology.

[21]  A. Vlahou,et al.  Very early and transient vegetal-plate expression of SpKrox1, a Krüppel/Krox gene from Strongylocentrotus purpuratus , 1996, Mechanisms of Development.

[22]  E. Davidson,et al.  Modular cis-regulatory organization of developmentally expressed genes: two genes transcribed territorially in the sea urchin embryo, and additional examples. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[23]  E. Davidson,et al.  Modular cis-regulatory organization of Endo16, a gut-specific gene of the sea urchin embryo. , 1996, Development.

[24]  W. Klein,et al.  Multiple Otx binding sites required for expression of the Strongylocentrotus purpuratus Spec2a gene. , 1994, Developmental biology.

[25]  R. Britten,et al.  Whole mount in situ hybridization shows Endo 16 to be a marker for the vegetal plate territory in sea urchin embryos , 1993, Mechanisms of Development.

[26]  W. Klein,et al.  A Positive cis-Regulatory Element with a bicoid Target Site Lies within the Sea Urchin Spec2a Enhancer , 1993 .

[27]  Wolfgang Driever,et al.  The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo , 1989, Nature.

[28]  R. Britten,et al.  Developmental appearance of factors that bind specifically to cis-regulatory sequences of a gene expressed in the sea urchin embryo. , 1988, Genes & development.

[29]  R. Britten,et al.  Direct introduction of cloned DNA into the sea urchin zygote nucleus, and fate of injected DNA. , 1988, Development.

[30]  R. Britten,et al.  Introduction of cloned DNA into sea urchin egg cytoplasm: replication and persistence during embryogenesis. , 1985, Developmental biology.

[31]  R. Britten,et al.  Inducible expression of a cloned heat shock fusion gene in sea urchin embryos. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M. Fenton,et al.  The role of IRF-4 in transcriptional regulation. , 2002, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research.

[33]  W. Klein,et al.  Transient appearance of Strongylocentrotus purpuratus Otx in micromere nuclei: cytoplasmic retention of SpOtx possibly mediated through an alpha-actinin interaction. , 1996, Developmental genetics.

[34]  P. Leahy Laboratory culture of Strongylocentrotus purpuratus adults, embryos, and larvae. , 1986, Methods in cell biology.