Common Features of the Onset of the Persistent Chaos in Nonlinear Oscillators: A Phenomenological Approach

Bifurcational precedences of generating the persistent,crossing-the-potential-barrier chaos in nonautonomous, dissipative nonlinearoscillators are examined. The comparative computational study covers thetwin-well oscillator, pendulum with parametric excitation, and pendulumdriven by external harmonic force. The study reveals common features of thesystem response properties and of the bifurcational scenarios, prior to theonset of the chaos. It is pointed out that, in the three considered systems,the chaos is preceded by the two and only two asymmetric periodicattractors, which are simultaneously annihilated via theperiod-doubling-crisis scenario. However, the generating of the chaos is notnecessarily related directly to the escape from a potential well. We alsoshow that, in all three systems, the persistent chaos can be viewed as anirregular combination of the `crossing the potential barrier' and theoscillatory component of motion.

[1]  G. Grüner,et al.  Nonlinear Conductivity and Noise due to Charge-Density-Wave Depinning in NbSe3 , 1981 .

[2]  Danilo Capecchi,et al.  Geometric aspects of the parametrically driven pendulum , 1995 .

[3]  Earl H. Dowell,et al.  FROM SINGLE WELL CHAOS TO CROSS WELL CHAOS: A DETAILED EXPLANATION IN TERMS OF MANIFOLD INTERSECTIONS , 1994 .

[4]  Yoshisuke Ueda,et al.  Catastrophes with indeterminate outcome , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[5]  J. Thompson,et al.  Indeterminate sub-critical bifurcations in parametric resonance , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[6]  J. J. Stoker Nonlinear Vibrations in Mechanical and Electrical Systems , 1950 .

[7]  Wanda Szemplińska-Stupnicka,et al.  The Behavior of Nonlinear Vibrating Systems , 1990 .

[8]  R. V. Dooren COMMENTS ON “ZONES OF CHAOTIC BEHAVIOUR IN THE PARAMETRICALLY EXCITED PENDULUM” , 1997 .

[9]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[10]  J. Yorke,et al.  Crises, sudden changes in chaotic attractors, and transient chaos , 1983 .

[11]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[12]  Wanda Szemplinska-Stupnicka,et al.  Steady states in the twin-well potential oscillator: Computer simulations and approximate analytical studies. , 1993, Chaos.

[13]  W. Martienssen,et al.  APPROACHING NONLINEAR DYNAMICS BY STUDYING THE MOTION OF A PENDULUM II: ANALYZING CHAOTIC MOTION , 1994 .

[14]  S. Bishop,et al.  Zones of chaotic behaviour in the parametrically excited pendulum , 1996 .

[15]  A. Zubrzycki,et al.  The Global bifurcations that lead to Transient tumbling Chaos in a Parametrically Driven Pendulum , 2000, Int. J. Bifurc. Chaos.

[16]  高橋 利衛,et al.  〔47〕非線型振動論 : 〔Nonlinear Vibrations in Mechanical and Electrical Systems, J.J.Stoker, Interscience Pub.N.Y., 1950,本文264ページ, 5$〕(1.應用力學および機械力學) , 1951 .

[17]  F. Moon Experiments on Chaotic Motions of a Forced Nonlinear Oscillator: Strange Attractors , 1980 .

[18]  Bernd Pompe,et al.  Experiments on periodic and chaotic motions of a parametrically forced pendulum , 1985 .

[19]  B. Koch,et al.  Chaotic behaviour of a parametrically excited damped pendulum , 1981 .

[20]  J. Thompson,et al.  Nonlinear Dynamics and Chaos , 2002 .

[21]  W. Martienssen,et al.  APPROACHING NONLINEAR DYNAMICS BY STUDYING THE MOTION OF A PENDULUM I: OBSERVING TRAJECTORIES IN STATE SPACE , 1994 .

[22]  Earl H. Dowell,et al.  Experimental mimicry of Duffing's equation , 1992 .

[23]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[24]  P. Holmes,et al.  A nonlinear oscillator with a strange attractor , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[25]  John W. Miles,et al.  Resonance and symmetry breaking for the pendulum , 1988 .

[26]  C. Hayashi,et al.  Nonlinear oscillations in physical systems , 1987 .

[27]  Li,et al.  Fractal basin boundaries and homoclinic orbits for periodic motion in a two-well potential. , 1985, Physical review letters.

[28]  Wanda Szemplińska-Stupnicka,et al.  Basin Boundary Bifurcations and Boundary Crisis in the Twin-Well Duffing Oscillator: Scenarios Related to the Saddle of the Large Resonant Orbit , 1997 .

[29]  Steven R. Bishop,et al.  Periodic oscillations and attracting basins for a parametrically excited pendulum , 1994 .

[30]  James A. Yorke,et al.  Dynamics: Numerical Explorations , 1994 .

[31]  Ali H. Nayfeh,et al.  Bifurcations and chaos in parametrically excited single-degree-of-freedom systems , 1990 .

[32]  E. Tyrkiel,et al.  Sequences of Global Bifurcations and the Related Outcomes after Crisis of the Resonant Attractor in a Nonlinear Oscillator , 1997 .

[33]  W. Szemplińska-Stupnicka,et al.  Properties of Chaotic and Regular Boundary Crisis in Dissipative Driven Nonlinear Oscillators , 1999 .

[34]  J. Yorke,et al.  Fractal basin boundaries , 1985 .

[35]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[36]  B. Koch,et al.  Subharmonic and homoclinic bifurcations in a parametrically forced pendulum , 1985 .

[37]  Gregory L. Baker,et al.  Chaotic Dynamics: An Introduction , 1990 .

[38]  W. C. Stewart,et al.  CURRENT‐VOLTAGE CHARACTERISTICS OF JOSEPHSON JUNCTIONS , 1968 .

[39]  Francis C. Moon,et al.  Chaotic and fractal dynamics , 1992 .