On Doubly-Cyclic Convolutional Codes

Cyclicity of a convolutional code (CC) is relying on a nontrivial automorphism of the algebra $$\mathbb{F}[x]/(x^n-1)$$, where $$\mathbb{F}$$ is a finite field. A particular choice of the data leads to the class of doubly-cyclic CC’s. Within this large class Reed-Solomon and BCH convolutional codes can be defined. After constructing doubly-cyclic CC’s, basic properties are derived on the basis of which distance properties of Reed-Solomon convolutional codes are investigated. This shows that some of them are optimal or near optimal with respect to distance and performance.

[1]  Joachim Rosenthal,et al.  Constructions of MDS-convolutional codes , 2001, IEEE Trans. Inf. Theory.

[2]  Kees Roos On the structure of convolutional and cyclic convolutional codes , 1979, IEEE Trans. Inf. Theory.

[3]  Joachim Rosenthal,et al.  Strongly-MDS convolutional codes , 2003, IEEE Transactions on Information Theory.

[4]  J. H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[5]  J. M. Muñoz Porras,et al.  Convolutional Codes of Goppa Type , 2003, Applicable Algebra in Engineering, Communication and Computing.

[6]  J. H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[7]  Heide Gluesing-Luerssen,et al.  Distance Bounds for Convolutional Codes and Some Optimal Codes , 2003 .

[8]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[9]  Av . Van Becelaere A CONVOLUTIONAL EQUIVALENT TO REED- SOLOMON CODES , 1988 .

[10]  Heide Gluesing-Luerssen,et al.  On the algebraic parameters of convolutional codes with cyclic structure , 2006 .

[11]  E. Paaske,et al.  Quasi-cyclic unit memory convolutional codes , 1990, IEEE Trans. Inf. Theory.

[12]  P. Piret,et al.  Structure and constructions of cyclic convolutional codes , 1976, IEEE Trans. Inf. Theory.

[13]  Joachim Rosenthal,et al.  Maximum Distance Separable Convolutional Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.

[14]  Philippe Piret A convolutional equivalent to Reed-Solomon codes , 1988 .

[15]  Joachim Rosenthal,et al.  Convolutional codes with maximum distance profile , 2003, Syst. Control. Lett..

[16]  Jørn Justesen,et al.  Bounds on distances and error exponents of unit memory codes , 1983, IEEE Trans. Inf. Theory.

[17]  Heide Gluesing-Luerssen,et al.  On Cyclic Convolutional Codes , 2002 .

[18]  Jr. G. Forney,et al.  Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .

[19]  G. David Forney,et al.  Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.

[20]  Heide Gluesing-Luerssen On the weight distribution of convolutional codes , 2005, ArXiv.

[21]  B. Langfeld,et al.  On the Parameters of Convolutional Codes with Cyclic Structure , 2003 .