Multivariate orthogonal polynomials, homogeneous Padé approximants and Gaussian cubature

The connection between orthogonal polynomials, Padé approximants and Gaussian quadrature is well known and will be repeated in section 1. In the past, several generalizations to the multivariate case have been suggested for all three concepts [4,6,9,...], however without reestablishing a fundamental and clear link. In sections 2 and 3 we will elaborate definitions for multivariate Padé and Padé-type approximation, multivariate polynomial orthogonality and multivariate Gaussian integration in order to bridge the gap between these concepts. We will show that the new m-point Gaussian cubature rules allow the exact integration of homogeneous polynomials of degree 2m−1, in any number of variables. A numerical application of the new integration rules can be found in sections 4 and 5.