Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation

Abstract The alkaline activation of aluminosilicates yields alkaline cements, eco-efficient alternatives to ordinary Portland cements. Alkaline cements and concretes exhibit highest strength and longest durability when activated with a solution of alkaline silicate hydrates (waterglass). To obtain these alkaline silicates, however, an aqueous solution of the proper proportion of carbonate and silica salts must be heated to temperatures of around 1300 °C. The present paper explores the feasibility of using urban and industrial glass waste as a potential alkaline activator for blast furnace slag (AAS). AAS pastes were prepared with three activators: waterglass, a NaOH/Na 2 CO 3 mix and the solutions resulting from dissolving glass waste in NaOH/Na 2 CO 3 . Mechanical, mineralogical (XRD, FTIR) and microstructural (porosimetry, NMR and SEM/EDX) trials were conducted to characterise the pastes obtained. The findings proved the feasibility of using glass waste to alkali activate slag. Treating glass waste with NaOH/Na 2 CO 3 (pH = 13.6) favours the partial dissolution of the Si in the glass into its most reactive monomeric form. The solutions resulting from the treatment of glass waste act as alkaline activators, partially dissolving vitreous blast furnace slag. The composition and microstructure of the reaction products identified in the two types of paste were similar. Strength and microstructural development in the pastes activated with glass waste were also comparable to the parameters observed in AAS pastes prepared with conventional activators.

[1]  R. W. Douglas,et al.  The dependence on the pH of the decomposition of glasses by aqueous solutions , 1972 .

[2]  K. Scrivener,et al.  Hydration products of alkali activated slag cement , 1995 .

[3]  Francisca Puertas,et al.  Sodium silicate solutions from dissolution of glasswastes. Statistical analysis , 2014 .

[4]  P. Colombet,et al.  Application of NMR spectroscopy to cement science , 1994 .

[5]  Francisca Puertas,et al.  Cementos de escorias activadas alcalinamente: Situación actual y perspectivas de futuro , 1995 .

[6]  R. H. Atkinson Recent advances in the applied chemistry of the rare metals. Jubilee memorial lecture , 1940 .

[7]  H. Scholze Chemical durability of glasses , 1982 .

[8]  Frank Collins,et al.  Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete , 2000 .

[9]  Francisca Puertas,et al.  Effect of Shrinkage-reducing Admixtures on the Properties of Alkali-activated Slag Mortars and Pastes , 2007 .

[10]  Francisca Puertas,et al.  Setting of alkali-activated slag cement. Influence of activator nature , 2001 .

[11]  C. Shi,et al.  New cements for the 21st century: The pursuit of an alternative to Portland cement , 2011 .

[12]  C. Dobson,et al.  The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase , 1994 .

[13]  Silvio Delvasto,et al.  Morteros de cementos alcalinos. Resistencia química al ataque por sulfatos y al agua de mar , 2002 .

[14]  Francisca Puertas,et al.  Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements , 2003 .

[15]  Francisca Puertas,et al.  Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate , 2004 .

[16]  H. Butt,et al.  Repulsion forces of superplasticizers on ground granulated blast furnace slag in alkaline media, from AFM measurements to rheological properties , 2012 .

[17]  A. Fernández-Jiménez,et al.  Propiedades y aplicaciones de los cementos alcalinos , 2009 .

[18]  J. Stark,et al.  Early hydration of ordinary Portland cement with an alkaline shotcrete accelerator , 2005 .

[19]  A. I. Andrievskii Blast-furnace smelting as an example of an integrated approach to the design of gas-cleaning units , 2008 .

[20]  J. Davidovits Geopolymer chemistry and applications , 2008 .

[21]  J. Deventer,et al.  Geopolymer technology: the current state of the art , 2007 .

[22]  C. Shi,et al.  Alkali-Activated Cements and Concretes , 2003 .

[23]  L. Butler,et al.  29Si and 27Al MAS‐NMR of NaOH‐Activated Blast‐Furnace Slag , 1994 .

[24]  A. Paul Chemical durability of glasses; a thermodynamic approach , 1977 .

[25]  Francisca Puertas,et al.  Alkali-activated slag mortars: Mechanical strength behaviour , 1999 .

[26]  P. L. Pratt,et al.  Alkali-activated slag cement and concrete: a review of properties and problems , 1995 .

[27]  F. Puertas,et al.  Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems , 2013 .

[28]  D. Michel,et al.  High-resolution solid-state NMR of silicates and zeolites , 1987 .

[29]  S. Martínez-Ramírez,et al.  Alkali-activated fly ash/slag cements: Strength behaviour and hydration products , 2000 .

[30]  John J. Emery,et al.  Glass Content Determination and Strength Development Predictions for Vitrified Blast Furnace Slag , 1983 .

[31]  J. G. Cabrera,et al.  The nature of CSH in model slag-cements , 2000 .

[32]  Á. Palomo,et al.  Durability of alkali-activated fly ash cementitious materials , 2007 .

[33]  P. L. Pratt,et al.  Factors affecting the strength of alkali-activated slag , 1994 .

[34]  V. Lehtonen,et al.  Durability of Concrete Made With Alkali-Activated Slag , 1989, "SP-114: Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete: Proceedings of the Third International Conference".

[35]  S. Bernal,et al.  High-temperature performance of mortars and concretes based on alkali-activated slag/metakaolin blends , 2012 .

[36]  A. Fernández-Jiménez,et al.  "Geopolimeros": una nica base qumica y diferentes microestructuras , 2004 .

[37]  Caijun Shi,et al.  Research on alkali-activated cementitious systems in China: a review , 1993 .

[38]  F. Puertas,et al.  Carbonation process of alkali-activated slag mortars , 2006 .

[39]  R. Gutiérrez,et al.  Resistencia a temperaturas elevadas de escorias activadas alcalinamente , 2004 .

[40]  C. Pantano,et al.  Decomposition of silicate glasses in alkaline solutions , 1977, Nature.

[41]  Kenneth K. Humphreys,et al.  The Cement Industry and Global Climate Change: Current and Potential Future Cement Industry CO2 Emissions , 2003 .

[42]  Y. Zaitsev,et al.  Slag-alkaline cements and concretes-structure, properties, technological and economical aspects of the use , 1983 .

[43]  Ángel Palomo,et al.  Composition and Microstructure of Alkali Activated Fly Ash Binder: Effect of the Activator , 2005 .

[44]  Francisca Puertas,et al.  Effectiveness of Mixing Time on Hardened Properties of Waterglass-Activated Slag Pastes and Mortars , 2011 .

[45]  Ángel Palomo,et al.  Alkali-activated fly ashes: A cement for the future , 1999 .

[46]  Á. Palomo,et al.  Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR Survey , 2008 .

[47]  H. Manzano,et al.  A model for the C-A-S-H gel formed in alkali-activated slag cements , 2011 .

[48]  I. Richardson,et al.  The incorporation of minor and trace elements into calcium silicate hydrate (CSH) gel in hardened cement pastes , 1993 .

[49]  F. Puertas,et al.  Structure of Calcium Silicate Hydrates Formed in Alkaline-Activated Slag: Influence of the Type of Alkaline Activator , 2003 .

[50]  Ángel Palomo,et al.  Alkali-activated fly ash: Effect of thermal curing conditions on mechanical and microstructural development – Part II , 2007 .

[51]  John L. Provis,et al.  Activating solution chemistry for geopolymers , 2009 .

[52]  I. Richardson,et al.  The structure of the calcium silicate hydrate phases present in hardened pastes of white Portland cement/blast-furnace slag blends , 1997 .

[53]  I. Richardson The nature of C-S-H in hardened cements , 1999 .

[54]  J. Deventer,et al.  The geopolymerisation of alumino-silicate minerals , 2000 .

[55]  Juan Carlos Ciscar,et al.  CO2 emission trading within the European Union and Annex B countries: the cement industry case , 2006 .

[56]  V. I. Korneev,et al.  Production and usage of powdered alkali metal silicate hydrates , 2008 .