Articulated Motion and Deformable Objects

[1]  Guodong Guo,et al.  Efficient Group-n Encoding and Decoding for Facial Age Estimation , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Pichao Wang,et al.  Skeleton Optical Spectra-Based Action Recognition Using Convolutional Neural Networks , 2018, IEEE Transactions on Circuits and Systems for Video Technology.

[3]  In So Kweon,et al.  KAIST Multi-Spectral Day/Night Data Set for Autonomous and Assisted Driving , 2018, IEEE Transactions on Intelligent Transportation Systems.

[4]  Steven Lake Waslander,et al.  Joint 3D Proposal Generation and Object Detection from View Aggregation , 2017, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[5]  Yuning Jiang,et al.  Repulsion Loss: Detecting Pedestrians in a Crowd , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[6]  Gang Wang,et al.  Deep Multimodal Feature Analysis for Action Recognition in RGB+D Videos , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Chalavadi Krishna Mohan,et al.  Human action recognition in RGB-D videos using motion sequence information and deep learning , 2017, Pattern Recognit..

[8]  Wei Zhan,et al.  Fusing Bird View LIDAR Point Cloud and Front View Camera Image for Deep Object Detection , 2017, ArXiv.

[9]  David Picard,et al.  Learning features combination for human action recognition from skeleton sequences , 2017, Pattern Recognit. Lett..

[10]  K. Nishi,et al.  Generation of human depth images with body part labels for complex human pose recognition , 2017, Pattern Recognit..

[11]  Germán Ros,et al.  CARLA: An Open Urban Driving Simulator , 2017, CoRL.

[12]  Peter Kontschieder,et al.  The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[13]  Peter Chiodini,et al.  Computer-Automated Malaria Diagnosis and Quantitation Using Convolutional Neural Networks , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[14]  Nikolaos M. Avouris,et al.  Effects of Image-Based Rendering and Reconstruction on Game Developers Efficiency, Game Performance, and Gaming Experience , 2017, INTERACT.

[15]  Yadong Mu,et al.  Deep Steering: Learning End-to-End Driving Model from Spatial and Temporal Visual Cues , 2017, ArXiv.

[16]  Hong Liu,et al.  Enhanced skeleton visualization for view invariant human action recognition , 2017, Pattern Recognit..

[17]  Prospero C. Naval,et al.  Malaria Parasite Detection and Species Identification on Thin Blood Smears Using a Convolutional Neural Network , 2017, 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE).

[18]  Sébastien Ourselin,et al.  Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations , 2017, DLMIA/ML-CDS@MICCAI.

[19]  Gunther Notni,et al.  Demand Analysis for an Augmented Reality based Assembly Training , 2017, PETRA.

[20]  Ashish Kapoor,et al.  AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles , 2017, FSR.

[21]  Mohammed Bennamoun,et al.  SkeletonNet: Mining Deep Part Features for 3-D Action Recognition , 2017, IEEE Signal Processing Letters.

[22]  Thierry Chateau,et al.  Deep MANTA: A Coarse-to-Fine Many-Task Network for Joint 2D and 3D Vehicle Analysis from Monocular Image , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Pichao Wang,et al.  Joint Distance Maps Based Action Recognition With Convolutional Neural Networks , 2017, IEEE Signal Processing Letters.

[24]  Michele Nappi,et al.  MEG: Texture operators for multi-expert gender classification , 2017, Comput. Vis. Image Underst..

[25]  Wei Liu,et al.  Discriminative Multi-instance Multitask Learning for 3D Action Recognition , 2017, IEEE Transactions on Multimedia.

[26]  Edilson de Aguiar,et al.  MARCOnI—ConvNet-Based MARker-Less Motion Capture in Outdoor and Indoor Scenes , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Bernt Schiele,et al.  CityPersons: A Diverse Dataset for Pedestrian Detection , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Meng Li,et al.  Graph-based approach for 3D human skeletal action recognition , 2017, Pattern Recognit. Lett..

[29]  Margrit Betke,et al.  Comparing random forest approaches to segmenting and classifying gestures , 2017, Image Vis. Comput..

[30]  Bo Li,et al.  3D fully convolutional network for vehicle detection in point cloud , 2016, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[31]  Ji Wan,et al.  Multi-view 3D Object Detection Network for Autonomous Driving , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Anton van den Hengel,et al.  Learning discriminative trajectorylet detector sets for accurate skeleton-based action recognition , 2015, Pattern Recognit..

[33]  Luc Van Gool,et al.  Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks , 2016, International Journal of Computer Vision.

[34]  Yi Yang,et al.  Person Re-identification: Past, Present and Future , 2016, ArXiv.

[35]  Qi Tian,et al.  MARS: A Video Benchmark for Large-Scale Person Re-Identification , 2016, ECCV.

[36]  John A. Quinn,et al.  Deep Convolutional Neural Networks for Microscopy-Based Point of Care Diagnostics , 2016, MLHC.

[37]  Vladlen Koltun,et al.  Playing for Data: Ground Truth from Computer Games , 2016, ECCV.

[38]  Jun Wan,et al.  Explore Efficient Local Features from RGB-D Data for One-Shot Learning Gesture Recognition , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Hamid Amiri,et al.  Hybrid segmentation of fluorescent leschmania-infected images using a watersched and combined region merging based method , 2016, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[40]  Liang Lin,et al.  Is Faster R-CNN Doing Well for Pedestrian Detection? , 2016, ECCV.

[41]  Antonio M. López,et al.  The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Tian Xia,et al.  Vehicle Detection from 3D Lidar Using Fully Convolutional Network , 2016, Robotics: Science and Systems.

[43]  Sergio Escalera,et al.  Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History, Trends, and Affect-Related Applications , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Xin Zhang,et al.  End to End Learning for Self-Driving Cars , 2016, ArXiv.

[45]  Alessia Saggese,et al.  Action recognition by using kernels on aclets sequences , 2016, Comput. Vis. Image Underst..

[46]  Yu Zhang,et al.  Unsupervised 3D shape segmentation and co-segmentation via deep learning , 2016, Comput. Aided Geom. Des..

[47]  Arun Ross,et al.  What Else Does Your Biometric Data Reveal? A Survey on Soft Biometrics , 2016, IEEE Transactions on Information Forensics and Security.

[48]  Varun Ramakrishna,et al.  Convolutional Pose Machines , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Jing Zhang,et al.  RGB-D-based action recognition datasets: A survey , 2016, Pattern Recognit..

[50]  Andrew Y. C. Nee,et al.  A comprehensive survey of augmented reality assembly research , 2016, Advances in Manufacturing.

[51]  Vladlen Koltun,et al.  Multi-Scale Context Aggregation by Dilated Convolutions , 2015, ICLR.

[52]  Christian Wolf,et al.  ModDrop: Adaptive Multi-Modal Gesture Recognition , 2014, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  Shahab Ensafi,et al.  Automatic segmentation of Leishmania parasite in microscopic images using a modified CV level set method , 2015, International Conference on Graphic and Image Processing.

[54]  Xiaogang Wang,et al.  Deep Learning Strong Parts for Pedestrian Detection , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[55]  Haitham Bou-Ammar,et al.  Factored four way conditional restricted Boltzmann machines for activity recognition , 2015, Pattern Recognit. Lett..

[56]  Cha Zhang,et al.  Image based Static Facial Expression Recognition with Multiple Deep Network Learning , 2015, ICMI.

[57]  Michael J. Black,et al.  SMPL: A Skinned Multi-Person Linear Model , 2023 .

[58]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[60]  Sang Do Noh,et al.  Virtual reality applications in manufacturing industries: Past research, present findings, and future directions , 2015, Concurr. Eng. Res. Appl..

[61]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[62]  Tal Hassner,et al.  Age and Gender Estimation of Unfiltered Faces , 2014, IEEE Transactions on Information Forensics and Security.

[63]  Hamid Amiri,et al.  Adaptive automatic segmentation of leishmaniasis parasite in indirect immunofluorescence images , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[64]  Manuel González Hidalgo,et al.  A Graph Based Segmentation Strategy for Baggage Scanner Images , 2014, AMDO.

[65]  H. Shahbazkia,et al.  INsPECT, an Open-Source and Versatile Software for Automated Quantification of (Leishmania) Intracellular Parasites , 2014, PLoS neglected tropical diseases.

[66]  Alexei A. Efros,et al.  People Watching: Human Actions as a Cue for Single View Geometry , 2012, International Journal of Computer Vision.

[67]  Abdesselam Bouzerdoum,et al.  Object segmentation and classification using 3-D range camera , 2014, J. Vis. Commun. Image Represent..

[68]  智一 吉田,et al.  Efficient Graph-Based Image Segmentationを用いた圃場図自動作成手法の検討 , 2014 .

[69]  Joris De Schutter,et al.  An adaptable system for RGB-D based human body detection and pose estimation , 2014, J. Vis. Commun. Image Represent..

[70]  Nasser Kehtarnavaz,et al.  Real-time human action recognition based on depth motion maps , 2016, Journal of Real-Time Image Processing.

[71]  Charles Pontonnier,et al.  Designing and evaluating a workstation in real and virtual environment: toward virtual reality based ergonomic design sessions , 2014, Journal on Multimodal User Interfaces.

[72]  Hongdong Li,et al.  A Simple Prior-Free Method for Non-rigid Structure-from-Motion Factorization , 2012, International Journal of Computer Vision.

[73]  Christian E. Schaerer,et al.  Mathematical morphology for counting Trypanosoma cruzi amastigotes , 2013, 2013 XXXIX Latin American Computing Conference (CLEI).

[74]  Antonis A. Argyros,et al.  Integrating tracking with fine object segmentation , 2013, Image Vis. Comput..

[75]  Peter V. Gehler,et al.  Poselet Conditioned Pictorial Structures , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[76]  Luc Van Gool,et al.  Human Pose Estimation Using Body Parts Dependent Joint Regressors , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[77]  Lixin Fan,et al.  Finger Tracking for Gestural Interaction in Mobile Devices , 2013, SCIA.

[78]  Richard Bowden,et al.  Multi-touchless: Real-time fingertip detection and tracking using geodesic maxima , 2013, 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).

[79]  Maja Pantic,et al.  The MAHNOB Laughter database , 2013, Image Vis. Comput..

[80]  Adam Hamrol,et al.  Application of Virtual Reality Techniques in Design of Ergonomic Manufacturing Workplaces , 2013, VARE.

[81]  Hossein Azizpour,et al.  Multi-view Body Part Recognition with Random Forests , 2013, BMVC.

[82]  Wei Li,et al.  One-shot learning gesture recognition from RGB-D data using bag of features , 2013, J. Mach. Learn. Res..

[83]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[84]  Albert Ali Salah,et al.  Are You Really Smiling at Me? Spontaneous versus Posed Enjoyment Smiles , 2012, ECCV.

[85]  Daniel McDuff,et al.  Exploring Temporal Patterns in Classifying Frustrated and Delighted Smiles , 2012, IEEE Transactions on Affective Computing.

[86]  Michael J. Black,et al.  From Pictorial Structures to deformable structures , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[87]  Bernt Schiele,et al.  Articulated people detection and pose estimation: Reshaping the future , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[88]  Frédo Durand,et al.  Unstructured Light Fields , 2012, Comput. Graph. Forum.

[89]  R. Krishna,et al.  Image Segmentation and Region Growing Algorithm , 2012 .

[90]  Amit Yerpude,et al.  Colour image segmentation using K – Medoids Clustering , 2012 .

[91]  B. Schiele,et al.  Discriminative Appearance Models for Pictorial Structures , 2012, International Journal of Computer Vision.

[92]  Michael J. Jones,et al.  Fully automatic pose-invariant face recognition via 3D pose normalization , 2011, 2011 International Conference on Computer Vision.

[93]  Andrew W. Fitzgibbon,et al.  Efficient regression of general-activity human poses from depth images , 2011, 2011 International Conference on Computer Vision.

[94]  Cristian Sminchisescu,et al.  Latent structured models for human pose estimation , 2011, 2011 International Conference on Computer Vision.

[95]  Anuj Srivastava,et al.  Shape Analysis of Elastic Curves in Euclidean Spaces , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[96]  Yang Wang,et al.  Learning hierarchical poselets for human parsing , 2011, CVPR 2011.

[97]  Mark Everingham,et al.  Learning effective human pose estimation from inaccurate annotation , 2011, CVPR 2011.

[98]  Yi Yang,et al.  Articulated pose estimation with flexible mixtures-of-parts , 2011, CVPR 2011.

[99]  Andrew W. Fitzgibbon,et al.  Real-time human pose recognition in parts from single depth images , 2011, CVPR 2011.

[100]  Leonidas J. Guibas,et al.  Persistence-based clustering in riemannian manifolds , 2011, SoCG '11.

[101]  Jesper Mortensen,et al.  Virtual light fields for global illumination in computer graphics , 2011 .

[102]  Shailendra Kumar Shrivastava,et al.  Clustering of Image Data Set Using K-Means and Fuzzy K-Means Algorithms , 2010, 2010 International Conference on Computational Intelligence and Communication Networks.

[103]  Ben Taskar,et al.  Cascaded Models for Articulated Pose Estimation , 2010, ECCV.

[104]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[105]  Christoph Schnörr,et al.  A Study of Parts-Based Object Class Detection Using Complete Graphs , 2010, International Journal of Computer Vision.

[106]  Michael J. Black,et al.  HumanEva: Synchronized Video and Motion Capture Dataset and Baseline Algorithm for Evaluation of Articulated Human Motion , 2010, International Journal of Computer Vision.

[107]  Jitendra Malik,et al.  Poselets: Body part detectors trained using 3D human pose annotations , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[108]  Thomas A. Funkhouser,et al.  A benchmark for 3D mesh segmentation , 2009, ACM Trans. Graph..

[109]  B. Schiele,et al.  Pictorial structures revisited: People detection and articulated pose estimation , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[110]  K. C. Ho,et al.  Particle Filtering Based Approach for Landmine Detection Using Ground Penetrating Radar , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[111]  Philip H. S. Torr,et al.  Randomized trees for human pose detection , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[112]  Trevor Darrell,et al.  Sparse probabilistic regression for activity-independent human pose inference , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[113]  Martial Hebert,et al.  Toward Objective Evaluation of Image Segmentation Algorithms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[114]  Marcelo M. Wanderley,et al.  Indirect Acquisition of Fingerings of harmonic Notes on the Flute , 2007, ICMC.

[115]  Niels da Vitoria Lobo,et al.  Open Hand Detection in a Cluttered Single Image using Finger Primitives , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[116]  Ankur Agarwal,et al.  Recovering 3D human pose from monocular images , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[117]  Maja Pantic,et al.  Web-based database for facial expression analysis , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[118]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[119]  Frank Nielsen,et al.  Statistical region merging , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[120]  Luigi Cinque,et al.  A clustering fuzzy approach for image segmentation , 2004, Pattern Recognit..

[121]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[122]  Daniel P. Huttenlocher,et al.  Pictorial Structures for Object Recognition , 2004, International Journal of Computer Vision.

[123]  Trevor Darrell,et al.  Fast pose estimation with parameter-sensitive hashing , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[124]  Jitendra Malik,et al.  Estimating Human Body Configurations Using Shape Context Matching , 2002, ECCV.

[125]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[126]  Michael Bosse,et al.  Unstructured lumigraph rendering , 2001, SIGGRAPH.

[127]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[128]  David C. Hogg,et al.  Learning Variable-Length Markov Models of Behavior , 2001, Comput. Vis. Image Underst..

[129]  Anthony G. Constantinides,et al.  A fast recursive shortest spanning tree for image segmentation and edge detection , 1997, IEEE Trans. Image Process..

[130]  Leonard McMillan,et al.  Plenoptic Modeling: An Image-Based Rendering System , 2023 .

[131]  Myungcheol Lee,et al.  Graph theory for image analysis: an approach based on the shortest spanning tree , 1986 .

[132]  S. Ullman Against direct perception , 1980, Behavioral and Brain Sciences.

[133]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.

[134]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[135]  Edsger Dijkstra,et al.  Some theorems on spanning subtrees of a graph : (proceedings knaw series a, _6_3(1960), nr 2, indagationes mathematicae, _2_2(1960), p 196-199) , 1960 .

[136]  R. Prim Shortest connection networks and some generalizations , 1957 .

[137]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .