A singular Coxeter presentation

We enlarge a Coxeter group into a category, with one object for each finite parabolic subgroup, encoding the combinatorics of double cosets. This category, the singular Coxeter monoid, is connected to the geometry of partial flag varieties. Our main result is a presentation of this category by generators and relations. We also provide a new description of reduced expressions for double cosets. We describe all the braid relations between such reduced expressions, and prove an analogue of Matsumoto’s theorem. This gives a proper development of ideas first introduced by Geordie Williamson. In type A we also equip the singular Coxeter monoid with a diagrammatic presentation using webs.

[1]  Adriano M. Garsia,et al.  Group actions on Stanley-Reisner rings and invariants of permutation groups☆ , 1984 .

[2]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[3]  Ben Elias Quantum Satake in type $A$. Part I , 2014, 1403.5570.

[4]  Sabin Cautis,et al.  Webs and quantum skew Howe duality , 2012, 1210.6437.

[5]  Florence March,et al.  2016 , 2016, Affair of the Heart.

[6]  Geordie Williamson Singular Soergel bimodules , 2010, 1010.1283.

[7]  Yu. I. Manin,et al.  Arrangements of Hyperplanes, Higher Braid Groups and Higher Bruhat Orders , 1989 .

[8]  Bridget Eileen Tenner,et al.  Parabolic Double Cosets in Coxeter Groups , 2016, Electron. J. Comb..

[9]  Ben Elias,et al.  The Hodge theory of Soergel bimodules , 2012, 1212.0791.

[10]  D. Tubbenhauer,et al.  Super $q$-Howe duality and web categories , 2015, 1504.05069.

[11]  G. Williamson,et al.  Tilting modules and the p-canonical basis , 2015, Astérisque.

[12]  Michael Wemyss A lockdown survey on cDV singularities , 2021 .

[13]  Ben Elias Light ladders and clasp conjectures , 2015, 1510.06840.

[14]  Nicolas Libedinsky Sur la catégorie des bimodules de Soergel , 2007, 0707.3603.

[15]  B. M. Fulk MATH , 1992 .

[16]  C. Ricketts Pages on Art , 2015 .

[17]  Ben Elias,et al.  Diagrammatics for Coxeter groups and their braid groups , 2014, 1405.4928.

[18]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[19]  Nathan Reading Cambrian Lattices , 2004 .

[20]  Hoel Queffelec,et al.  Mixed quantum skew Howe duality and link invariants of type A , 2015, Journal of Pure and Applied Algebra.

[21]  W. Soergel Kategorie , perverse Garben und Moduln über den Koinvarianten zur Weylgruppe , 1990 .

[22]  Christophe Hohlweg,et al.  The facial weak order and its lattice quotients , 2016, 1602.03158.

[23]  Nathan Reading,et al.  Order Dimension, Strong Bruhat Order and Lattice Properties for Posets , 2002, Order.

[24]  Ben Elias,et al.  Modular representation theory in type A via Soergel bimodules , 2017, 1701.00560.

[25]  C. Martin 2015 , 2015, Les 25 ans de l’OMC: Une rétrospective en photos.

[26]  R. Tennant Algebra , 1941, Nature.

[27]  Marian Kremers 2021 , 2021, Vakblad Sociaal Werk.

[28]  Mikhail Khovanov,et al.  Diagrammatics for Soergel Categories , 2009, Int. J. Math. Math. Sci..