Teichmüller theory of bordered surfaces

We propose the graph description of Teichmuller theory of surfaces with marked points on boundary components (bordered surfaces). Introducing new parameters, we formu- late this theory in terms of hyperbolic geometry. We can then describe both classical and quantum theories having the proper number of Thurston variables (foliation-shear coordi- nates), mapping-class group invariance (both classical and quantum), Poisson and quantum algebra of geodesic functions, and classical and quantum braid-group relations. These new algebras can be defined on the double of the corresponding graph related (in a novel way) to a double of the Riemann surface (which is a Riemann surface with holes, not a smooth Riemann surface). We enlarge the mapping class group allowing transformations relating different Teichmuller spaces of bordered surfaces of the same genus, same number of boun- dary components, and same total number of marked points but with arbitrary distributions of marked points among the boundary components. We describe the classical and quantum algebras and braid group relations for particular sets of geodesic functions corresponding to An and Dn algebras and discuss briefly the relation to the Thurston theory.

[1]  D. Thurston,et al.  Cluster algebras and triangulated surfaces. Part I: Cluster complexes , 2006, math/0608367.

[2]  R. Penner,et al.  Closed/open string diagrammatics , 2006, math/0603485.

[3]  A. Bondal A symplectic groupoid of triangular bilinear forms and the braid group , 2004 .

[4]  J. Teschner An analog of a modular functor from quantized Teichm , 2004, math/0405332.

[5]  R. Penner,et al.  On Quantizing Teichmüller and Thurston theories , 2004, math/0403247.

[6]  A. Goncharov,et al.  Moduli spaces of local systems and higher Teichmüller theory , 2003, math/0311149.

[7]  S. Fomin,et al.  The Laurent Phenomenon , 2001, Adv. Appl. Math..

[8]  S. Fomin,et al.  Cluster algebras I: Foundations , 2001, math/0104151.

[9]  L. Chekhov,et al.  Observables in 3d gravity and geodesic algebras , 2000 .

[10]  R. Kashaev ON THE SPECTRUM OF DEHN TWISTS IN QUANTUM TEICHMÜLLER THEORY , 2000, math/0008148.

[11]  Monica Ugaglia On a Poisson structure on the space of stokes matrices , 1999, math/9902045.

[12]  B. Dubrovin,et al.  Monodromy of certain Painlevé–VI transcendents and reflection groups , 1998, math/9806056.

[13]  W. Thurston Minimal stretch maps between hyperbolic surfaces , 1998, math/9801039.

[14]  R. Kashaev Quantization of Teichmüller Spaces and the Quantum Dilogarithm , 1997, q-alg/9705021.

[15]  V. Fock Dual Teichm\" uller spaces , 1997 .

[16]  A. Papadopoulos,et al.  The Weil-Petersson symplectic structure at Thurston's boundary , 1993 .

[17]  J. Harer,et al.  Combinatorics of Train Tracks. , 1991 .

[18]  F. Zertuche,et al.  Homotopy groups and (2 + 1)-dimensional quantum de Sitter gravity , 1990 .

[19]  T. Regge,et al.  Homotopy Groups and (2+1)-dimensional Quantum Gravity , 1989 .

[20]  W. Goldman Invariant functions on Lie groups and Hamiltonian flows of surface group representations , 1986 .

[21]  B. Dubrovin,et al.  Monodromy of certain Painlev e-VI transcendents and reection groups , 2006 .

[22]  V. Fock Dual Teichmüller Spaces , 1997 .

[23]  F. Bonahon Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form , 1996 .