Semidefinite Relaxation for the Dominating Set Problem

It is a well-known fact that finding a minimum dominating set and consequently finding the domination number of a general graph is an NP-complete problem. Here, we first model this problem as nonlinear binary optimization problems and then extract two closely related semidefinite relaxations. For each of these relaxations, different rounding algorithms are exploited to produce near-optimal dominating sets. Feasibility of the generated solutions and efficiency of the algorithms are analyzed.

[1]  Joseph Douglas Horton,et al.  On Covering Sets and Error-Correcting Codes , 1971, J. Comb. Theory, Ser. A.

[2]  Stephen T. Hedetniemi,et al.  Towards a theory of domination in graphs , 1977, Networks.

[3]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[4]  Margaret B. Cozzens,et al.  Dominating sets in social network graphs , 1988 .

[5]  Lorna Stewart,et al.  Dominating sets in perfect graphs , 1991, Discret. Math..

[6]  W. Edwin Clark,et al.  The domination numbers of the 5 × n and 6 × n grid graphs , 1993, J. Graph Theory.

[7]  Carsten Lund,et al.  On the hardness of approximating minimization problems , 1994, JACM.

[8]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[9]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[10]  Ran Raz,et al.  A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP , 1997, STOC '97.

[11]  T Talaky,et al.  Interior Point Methods of Mathematical Programming , 1997 .

[12]  David R. Karger,et al.  Approximate graph coloring by semidefinite programming , 1998, JACM.

[13]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[14]  S. Hedetniemi,et al.  Domination in graphs : advanced topics , 1998 .

[15]  Jon M. Kleinberg,et al.  The Lovász Theta Function and a Semidefinite Programming Relaxation of Vertex Cover , 1998, SIAM J. Discret. Math..

[16]  Noga Alon,et al.  Approximating the independence number via theϑ-function , 1998, Math. Program..

[17]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[18]  Eran Halperin,et al.  Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs , 2000, SODA '00.

[19]  Anureet Saxena Polyhedral studies in Domination Graph Theory (I) , 2003 .

[20]  Colin Cooper,et al.  Lower Bounds and Algorithms for Dominating Sets in Web Graphs , 2005, Internet Math..

[21]  Teresa W. Haynes,et al.  A quantitative analysis of secondary RNA structure using domination based parameters on trees , 2006, BMC Bioinformatics.

[22]  Rolf Niedermeier,et al.  Experiments on data reduction for optimal domination in networks , 2006, Ann. Oper. Res..

[23]  Jie Wu,et al.  On constructing k-connected k-dominating set in wireless ad hoc and sensor networks , 2006, J. Parallel Distributed Comput..

[24]  Stéphan Thomassé,et al.  The Domination Number of Grids , 2011, SIAM J. Discret. Math..

[25]  J. Lasserre,et al.  Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .