Quantum Metrology for Noisy Systems
暂无分享,去创建一个
L. Davidovich | L. Davidovich | R. L. D. M. Filho | B. Escher | B. M. Escher | R. L. Matos Filho | L. Davidovich
[1] R. Chaves,et al. Open-system dynamics of graph-state entanglement. , 2009, Physical review letters.
[2] L. Davidovich,et al. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.
[3] Brian J. Smith,et al. Optimal quantum phase estimation. , 2008, Physical review letters.
[4] Jonathan P. Dowling,et al. CORRELATED INPUT-PORT, MATTER-WAVE INTERFEROMETER : QUANTUM-NOISE LIMITS TO THE ATOM-LASER GYROSCOPE , 1998 .
[5] M. P. Almeida,et al. Environment-Induced Sudden Death of Entanglement , 2007, Science.
[6] Jan Kolodynski,et al. Phase estimation without a priori phase knowledge in the presence of loss , 2010, 1006.0734.
[7] S. Lloyd,et al. Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.
[8] B. Sundaram,et al. Bose-Einstein condensate as a nonlinear Ramsey interferometer operating beyond the Heisenberg limit , 2007, 0709.3842.
[9] C. R. Rao,et al. Linear Statistical Inference and its Applications , 1968 .
[10] J. Cirac,et al. Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.
[11] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[12] I. Walmsley,et al. Experimental quantum-enhanced estimation of a lossy phase shift , 2009, 0906.3511.
[13] K. Banaszek,et al. Quantum phase estimation with lossy interferometers , 2009, 0904.0456.
[14] Wineland,et al. Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[15] Calyampudi R. Rao,et al. Linear Statistical Inference and Its Applications. , 1975 .
[16] E. Davies,et al. PROBABILISTIC AND STATISTICAL ASPECTS OF QUANTUM THEORY (North‐Holland Series in Statistics and Probability, 1) , 1984 .
[17] S. Gudder. Review: A. S. Holevo, Probabilistic and statistical aspects of quantum theory , 1985 .
[18] Calyampudi R. Rao,et al. Linear statistical inference and its applications , 1965 .
[19] Sergio Boixo,et al. Generalized limits for single-parameter quantum estimation. , 2006, Physical review letters.
[20] Alfredo Luis,et al. Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes. , 2010, Physical review letters.
[21] S. Lloyd,et al. Advances in quantum metrology , 2011, 1102.2318.
[22] Vadim N. Smelyanskiy,et al. Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state , 2010, 1006.1645.
[23] R. Chaves,et al. Scaling laws for the decay of multiqubit entanglement. , 2008, Physical review letters.
[24] K. Kraus,et al. States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .
[25] C. Helstrom. Quantum detection and estimation theory , 1969 .
[26] G. Milburn,et al. Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.
[27] R. Fisher,et al. On the Mathematical Foundations of Theoretical Statistics , 1922 .
[28] Carlton M. Caves,et al. Nonlinear quantum metrology using coupled nanomechanical resonators , 2008, 0804.4540.
[29] Rory A. Fisher,et al. Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.
[30] L. Ballentine,et al. Probabilistic and Statistical Aspects of Quantum Theory , 1982 .
[31] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .