Quantum Metrology for Noisy Systems

The estimation of parameters characterizing dynamical processes is a central problem in science and technology. It concerns for instance the evaluation of the duration of some interaction, of the value of a coupling constant, or yet of a frequency in atomic spectroscopy. The estimation error changes with the number N of resources employed in the experiment (which could quantify, for instance, the number of probes or the probing energy). For independent probes, it scales as $1/\sqrt{N}$—the standard limit—a consequence of the central-limit theorem. Quantum strategies, involving for instance entangled or squeezed states, may improve the precision, for noiseless processes, by an extra factor $1/\sqrt{N}$, leading to the so-called Heisenberg limit. For noisy processes, an important question is if and when this improvement can be achieved. Here, we review and detail our recent proposal of a general framework for obtaining attainable and useful lower bounds for the ultimate limit of precision in noisy systems. We apply this bound to lossy optical interferometry and show that, independently of the initial states of the probes, it captures the main features of the transition, as N grows, from the 1/N to the $1/\sqrt{N}$ behavior.

[1]  R. Chaves,et al.  Open-system dynamics of graph-state entanglement. , 2009, Physical review letters.

[2]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[3]  Brian J. Smith,et al.  Optimal quantum phase estimation. , 2008, Physical review letters.

[4]  Jonathan P. Dowling,et al.  CORRELATED INPUT-PORT, MATTER-WAVE INTERFEROMETER : QUANTUM-NOISE LIMITS TO THE ATOM-LASER GYROSCOPE , 1998 .

[5]  M. P. Almeida,et al.  Environment-Induced Sudden Death of Entanglement , 2007, Science.

[6]  Jan Kolodynski,et al.  Phase estimation without a priori phase knowledge in the presence of loss , 2010, 1006.0734.

[7]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[8]  B. Sundaram,et al.  Bose-Einstein condensate as a nonlinear Ramsey interferometer operating beyond the Heisenberg limit , 2007, 0709.3842.

[9]  C. R. Rao,et al.  Linear Statistical Inference and its Applications , 1968 .

[10]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[11]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[12]  I. Walmsley,et al.  Experimental quantum-enhanced estimation of a lossy phase shift , 2009, 0906.3511.

[13]  K. Banaszek,et al.  Quantum phase estimation with lossy interferometers , 2009, 0904.0456.

[14]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[15]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[16]  E. Davies,et al.  PROBABILISTIC AND STATISTICAL ASPECTS OF QUANTUM THEORY (North‐Holland Series in Statistics and Probability, 1) , 1984 .

[17]  S. Gudder Review: A. S. Holevo, Probabilistic and statistical aspects of quantum theory , 1985 .

[18]  Calyampudi R. Rao,et al.  Linear statistical inference and its applications , 1965 .

[19]  Sergio Boixo,et al.  Generalized limits for single-parameter quantum estimation. , 2006, Physical review letters.

[20]  Alfredo Luis,et al.  Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes. , 2010, Physical review letters.

[21]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[22]  Vadim N. Smelyanskiy,et al.  Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state , 2010, 1006.1645.

[23]  R. Chaves,et al.  Scaling laws for the decay of multiqubit entanglement. , 2008, Physical review letters.

[24]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[25]  C. Helstrom Quantum detection and estimation theory , 1969 .

[26]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[27]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[28]  Carlton M. Caves,et al.  Nonlinear quantum metrology using coupled nanomechanical resonators , 2008, 0804.4540.

[29]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[30]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[31]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .