What is the Basic Assumption for Probabilistic Seismic Hazard Assessment

The goal of probabilistic seismic‐hazard analysis (PSHA) is to summarize the rates of seismic ground‐motion hazards at a site. The basic assumption is that true hazard curves exist to express the exceedance rates of any ground‐motion amplitude at a site. Procedurally, PSHA depends on a complete and accurate description of seismicity combined with a model for ground motions using standard probabilistic methods to estimate the hazard curve. The hazard curve can be improved by improving inputs and by identifying and then resolving inconsistencies between observations and estimated hazard. However, these inconsistencies do not invalidate the existence of the hazard curve or the probability theory used to estimate it.

[1]  M. Leonard,et al.  A record of stable continental region earthquakes from Western Australia spanning the late Pleistocene: Insights for contemporary seismicity , 2011 .

[2]  Timothy J. Sullivan,et al.  Probabilistic Seismic Hazard Analyses for Ground Motions and Fault Displacement at Yucca Mountain, Nevada , 2001 .

[3]  Peter Molnar,et al.  Earthquake recurrence intervals and plate tectonics , 1979 .

[4]  Charles S. Mueller,et al.  Documentation for the 2008 update of the United States National Seismic Hazard Maps , 2008 .

[5]  R. Mcguire Seismic Hazard and Risk Analysis , 2004 .

[6]  Gail M. Atkinson,et al.  Single-Station Sigma , 2006 .

[7]  K. Campbell,et al.  NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra , 2014 .

[8]  James N. Brune,et al.  Precariously balanced rocks and ground-motion maps for Southern California , 1996 .

[9]  C. Kesselman,et al.  CyberShake: A Physics-Based Seismic Hazard Model for Southern California , 2011 .

[10]  Matt Gerstenberger,et al.  Ground Motion–Based Testing of Seismic Hazard Models in New Zealand , 2010 .

[11]  Pierre-Yves Bard,et al.  Can Strong-Motion Observations be Used to Constrain Probabilistic Seismic-Hazard Estimates? , 2008 .

[12]  Norman A. Abrahamson,et al.  Summary of the ASK14 Ground Motion Relation for Active Crustal Regions , 2014 .

[13]  E. Field,et al.  Estimating Earthquake-Rupture Rates on a Fault or Fault System , 2011 .

[14]  Linda Al Atik,et al.  A Model for Single‐Station Standard Deviation Using Data from Various Tectonic Regions , 2013 .

[15]  B. E. Shaw,et al.  Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3)—The Time‐Independent Model , 2014 .

[16]  S. Stein,et al.  Mineral, Virginia, earthquake illustrates seismicity of a passive‐aggressive margin , 2012 .

[17]  Steven G. Wesnousky,et al.  The Gutenberg-Richter or characteristic earthquake distribution, which is it? , 1994 .

[18]  Jack W. Baker,et al.  Use of Fragile Geologic Structures as Indicators of Unexceeded Ground Motions and Direct Constraints on Probabilistic Seismic Hazard Analysis , 2013 .

[19]  Steven G. Wesnousky,et al.  Earthquakes, quaternary faults, and seismic hazard in California , 1986 .

[20]  D. Perkins,et al.  National Seismic-Hazard Maps: Documentation June 1996 , 1996 .

[21]  S. Harmsen,et al.  Documentation for the 2002 update of the national seismic hazard maps , 2002 .

[22]  Mark D. Petersen,et al.  Comparison of the Historical Record of Earthquake Hazard with Seismic- Hazard Models for New Zealand and the Continental United States , 2006 .

[23]  C. R. Allen,et al.  Geological Criteria for Evaluating Seismicity , 1975 .

[24]  John G. Anderson Estimating the seismicity from geological structure for seismic-risk studies , 1979 .

[25]  Shahram Pezeshk,et al.  Hybrid Empirical Ground-Motion Prediction Equations for Eastern North America Using NGA Models and Updated Seismological Parameters , 2011 .

[26]  John G. Anderson,et al.  Investigation of the Ground‐Motion Variability Associated with Site Response for Sites with VS30 over 500 m/s , 2015 .

[27]  Danijel Schorlemmer,et al.  The Statistical Power of Testing Probabilistic Seismic-Hazard Assessments , 2014 .

[28]  Mario Ordaz,et al.  Earthquake hazard in Mexico City: Observations versus computations , 1999 .

[29]  Kelvin Berryman,et al.  A New Seismic Hazard Model for New Zealand , 2002 .

[30]  Gail M. Atkinson,et al.  Predicted Ground Motions for Great Interface Earthquakes in the Cascadia Subduction Zone , 2009 .

[31]  Jonathan P. Stewart,et al.  NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes , 2014 .

[32]  M. Wyss Testing the Basic Assumption for Probabilistic Seismic‐Hazard Assessment: 11 Failures , 2015 .

[33]  W. Milne,et al.  Distribution of earthquake risk in Canada , 1969 .

[34]  D. P. Schwartz,et al.  Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas Fault Zones , 1984 .

[35]  J. Mezcua,et al.  Observed and Calculated Intensities as a Test of a Probabilistic Seismic-Hazard Analysis of Spain , 2013 .

[36]  Warner Marzocchi,et al.  Testing for ontological errors in probabilistic forecasting models of natural systems , 2014, Proceedings of the National Academy of Sciences.

[37]  Edward H. Field,et al.  “All Models Are Wrong, but Some Are Useful” , 2015 .

[38]  Charles S. Mueller,et al.  2014 Update of the United States National Seismic Hazard Maps , 2012 .

[39]  Julian J. Bommer,et al.  Why Do Modern Probabilistic Seismic-Hazard Analyses Often Lead to Increased Hazard Estimates? , 2006 .