Modular Extensions of Unitary Braided Fusion Categories and 2+1D Topological/SPT Orders with Symmetries

A finite bosonic or fermionic symmetry can be described uniquely by a symmetric fusion category $${\mathcal{E}}$$E. In this work, we propose that 2+1D topological/SPT orders with a fixed finite symmetry $${\mathcal{E}}$$E are classified, up to $${E_8}$$E8 quantum Hall states, by the unitary modular tensor categories $${\mathcal{C}}$$C over $${\mathcal{E}}$$E and the modular extensions of each $${\mathcal{C}}$$C. In the case $${\mathcal{C}=\mathcal{E}}$$C=E, we prove that the set $${\mathcal{M}_{ext}(\mathcal{E})}$$Mext(E) of all modular extensions of $${\mathcal{E}}$$E has a natural structure of a finite abelian group. We also prove that the set $${\mathcal{M}_{ext}(\mathcal{C})}$$Mext(C) of all modular extensions of $${\mathcal{E}}$$E, if not empty, is equipped with a natural $${\mathcal{M}_{ext}(\mathcal{C})}$$Mext(C)-action that is free and transitive. Namely, the set $${\mathcal{M}_{ext}(\mathcal{C})}$$Mext(C) is an $${\mathcal{M}_{ext}(\mathcal{E})}$$Mext(E)-torsor. As special cases, we explain in detail how the group $${\mathcal{M}_{ext}(\mathcal{E})}$$Mext(E) recovers the well-known group-cohomology classification of the 2+1D bosonic SPT orders and Kitaev’s 16 fold ways. We also discuss briefly the behavior of the group $${\mathcal{M}_{ext}(\mathcal{E})}$$Mext(E) under the symmetry-breaking processes and its relation to Witt groups.

[1]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[2]  S. Yamagami Polygonal presentations of semisimple tensor categories , 2002 .

[3]  Shinsei Ryu,et al.  Classification of topological insulators and superconductors in three spatial dimensions , 2008, 0803.2786.

[4]  X. Wen Classifying gauge anomalies through SPT orders and classifying gravitational anomalies through topological orders , 2018 .

[5]  V. Ostrik,et al.  The Witt group of non-degenerate braided fusion categories , 2010, 1009.2117.

[6]  V. Ostrik,et al.  On the structure of the Witt group of braided fusion categories , 2011, 1109.5558.

[7]  P. Etingof,et al.  WEAKLY GROUP-THEORETICAL AND SOLVABLE FUSION CATEGORIES , 2008, 0809.3031.

[8]  D. Freed,et al.  Twisted Equivariant Matter , 2012, 1208.5055.

[9]  Michael Mueger On the Structure of Modular Categories , 2002, math/0201017.

[10]  C. Galindo On Braided and Ribbon Unitary Fusion Categories , 2012, Canadian Mathematical Bulletin.

[11]  Xiao-Gang Wen,et al.  Topological Orders in Rigid States , 1990 .

[12]  P. Vecserny'es On the Quantum Symmetry of the Chiral Ising Model , 1993, hep-th/9306118.

[13]  X. Wen,et al.  Classification of (2+1)-dimensional topological order and symmetry-protected topological order for bosonic and fermionic systems with on-site symmetries , 2016, 1602.05946.

[14]  Galois extensions of braided tensor categories and braided crossed G-categories , 2002, math/0209093.

[15]  Huan He,et al.  Boson condensation in topologically ordered quantum liquids , 2016, 1601.01320.

[16]  Jr Alexander Kirillov Modular Categories and Orbifold Models , 2001, math/0104242.

[17]  B. Zeng,et al.  Gapped quantum liquids and topological order, stochastic local transformations and emergence of unitarity , 2014, 1406.5090.

[18]  Hao Zheng,et al.  Boundary-bulk relation for topological orders as the functor mapping higher categories to their centers , 2015, 1502.01690.

[19]  G. Moore,et al.  Classical and quantum conformal field theory , 1989 .

[20]  X. Wen,et al.  Braided fusion categories, gravitational anomalies, and the mathematical framework for topological orders in any dimensions , 2014, 1405.5858.

[21]  Correspondences of ribbon categories , 2003, math/0309465.

[22]  V. Ostrik,et al.  On q analog of McKay correspondence and ADE classification of affine sl(2) conformal field theories , 2001 .

[23]  V. Drinfeld,et al.  GROUP-THEORETICAL PROPERTIES OF NILPOTENT MODULAR CATEGORIES , 2007, 0704.0195.

[24]  P. Etingof,et al.  Fusion categories and homotopy theory , 2009, 0909.3140.

[25]  Yinhuo Zhang,et al.  The Brauer group of a braided monoidal category , 1998 .

[26]  J. Fuchs,et al.  Towards a classification of rational Hopf algebras , 1994, hep-th/9402153.

[27]  David Ben-Zvi,et al.  Integrating quantum groups over surfaces: quantum character varieties and topological field theory , 2015 .

[28]  Xiao-Gang Wen,et al.  Tensor-Entanglement-Filtering Renormalization Approach and Symmetry Protected Topological Order , 2009, 0903.1069.

[29]  X. Wen Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders , 2013, 1303.1803.

[30]  Xiao-Gang Wen,et al.  Symmetry protected topological orders and the group cohomology of their symmetry group , 2011, 1106.4772.

[31]  C. Galindo,et al.  Generalized and Quasi-Localizations of Braid Group Representations , 2011, 1105.5048.

[32]  D. Tambara A Duality for Modules over Monoidal Categories of Representations of Semisimple Hopf Algebras , 2001 .

[33]  On fusion categories , 2002, math/0203060.

[34]  Alexei Kitaev,et al.  Periodic table for topological insulators and superconductors , 2009, 0901.2686.

[35]  I. Runkel,et al.  Cardy Algebras and Sewing Constraints, I , 2008, 0807.3356.

[36]  Hao Zheng,et al.  The center functor is fully faithful , 2015, Advances in Mathematics.

[37]  Michael Levin,et al.  Braiding statistics approach to symmetry-protected topological phases , 2012, 1202.3120.

[38]  On α-Induction, Chiral Generators and¶Modular Invariants for Subfactors , 1999, math/9904109.

[39]  D. Naidu,et al.  Centers of graded fusion categories , 2009, 0905.3117.

[40]  Meng Cheng,et al.  Symmetry fractionalization, defects, and gauging of topological phases , 2014, Physical Review B.

[41]  Finite tensor categories , 2003, math/0301027.

[42]  Xiao-Gang Wen,et al.  Topological orders and edge excitations in fractional quantum hall states , 1995, cond-mat/9506066.

[43]  V. Drinfeld,et al.  On braided fusion categories I , 2009, 0906.0620.

[44]  Eric C. Rowell,et al.  Rank-finiteness for modular categories , 2013, 1310.7050.

[45]  Michael Mueger Galois Theory for Braided Tensor Categories and the Modular Closure , 1998, math/9812040.

[46]  Xiao-Gang Wen,et al.  Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order , 2010, 1004.3835.

[47]  X. Wen,et al.  Theory of (2+1)-dimensional fermionic topological orders and fermionic/bosonic topological orders with symmetries , 2015, 1507.04673.

[48]  Michael Levin,et al.  Protected edge modes without symmetry , 2013, 1301.7355.