Assessment of hydrogen storage by physisorption in porous materials

As a basis for the evaluation of hydrogen storage by physisorption, adsorption isotherms of H2 were experimentally determined for several porous materials at 77 K and 298 K at pressures up to 15 MPa. Activated carbons and MOFs were studied as the most promising materials for this purpose. A noble focus was given on how to determine whether a material is feasible for hydrogen storage or not, dealing with an assessment method and the pitfalls and problems of determining the viability. For a quantitative evaluation of the feasibility of sorptive hydrogen storage in a general analysis, it is suggested to compare the stored amount in a theoretical tank filled with adsorbents to the amount of hydrogen stored in the same tank without adsorbents. According to our results, an “ideal” sorbent for hydrogen storage at 77 K is calculated to exhibit a specific surface area of >2580 m2 g−1 and a micropore volume of >1.58 cm3 g−1.

[1]  A. Züttel,et al.  Hydrogen adsorption in carbonaceous materials–: How to determine the storage capacity accurately , 2002 .

[2]  Y. Sakurai,et al.  Hydrogen physisorption capacities of mechanically milled activated carbon powders in a H2 atmosphere using a gravimetric method , 2004 .

[3]  D. Lozano‐Castelló,et al.  Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons , 2004 .

[4]  Pierre Bénard,et al.  Modeling of adsorption storage of hydrogen on activated carbons , 2001 .

[5]  Zahira Yaakob,et al.  Solid-state Materials and Methods for Hydrogen Storage: A Critical Review , 2010 .

[6]  D. Do,et al.  Modeling of gas adsorption equilibrium over a wide range of pressure: a thermodynamic approach based on equation of state. , 2002, Journal of colloid and interface science.

[7]  F. Schüth Mobile Wasserstoffspeicher mit Hydriden der leichten Elemente , 2006 .

[8]  I. Smirnova,et al.  Synthesis of Silica Aerogels: Influence of the Supercritical CO2 on the Sol-Gel Process , 2003 .

[9]  J. A. Ritter,et al.  Implementing a hydrogen economy , 2003 .

[10]  M. O'keeffe,et al.  Advances in the chemistry of metal–organic frameworks , 2002 .

[11]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[12]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[13]  Shivaji Sircar,et al.  Measurement of gibbsian surface excess , 2001 .

[14]  P. Harting,et al.  Highest Pressure Adsorption Equilibria Data: Measurement with Magnetic Suspension Balance and Analysis with a New Adsorbent/Adsorbate-Volume , 2002 .

[15]  R. Staudt,et al.  High pressure adsorption of hydrogen, nitrogen, carbon dioxide and methane on the metal–organic framework HKUST-1 , 2011 .

[16]  D. P. Broom,et al.  The accuracy of hydrogen sorption measurements on potential storage materials , 2007 .

[17]  Andreas Züttel,et al.  Hydrogen storage methods , 2004, Naturwissenschaften.

[18]  Siegmar Roth,et al.  Hydrogen adsorption in different carbon nanostructures , 2005 .

[19]  U. Müller,et al.  Untersuchungen der Desorption von Wasserstoff in metall-organischen Gerüsten , 2008 .

[20]  Michael A. Miller,et al.  Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks , 2007 .

[21]  Amy J. Cairns,et al.  Insights on Adsorption Characterization of Metal-Organic Frameworks: A Benchmark Study on the Novel soc-MOF , 2010 .

[22]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[23]  M. Thommes,et al.  Unusual adsorption behavior of a highly flexible copper-based MOF , 2011 .

[24]  A. Chambers,et al.  Hydrogen Storage in Graphite Nanofibers , 1998 .

[25]  S. Bromley,et al.  Thermodynamic limits on hydrogen storage in sodalite framework materials: a molecular mechanics investigation , 2005 .

[26]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[27]  Rachel B. Getman,et al.  Metal Alkoxide Functionalization in Metal—Organic Frameworks for Enhanced Ambient-Temperature Hydrogen Storage , 2011 .

[28]  Gérard Férey,et al.  Calculating Geometric Surface Areas as a Characterization Tool for Metal−Organic Frameworks , 2007 .

[29]  K. Tsutsumi,et al.  Hyperstoichiometric hydrogen occlusion by palladium nanoparticles included in NaY zeolite , 2001 .

[30]  J. Bentley,et al.  Hydrogen storage by carbon sorption , 1997 .

[31]  D. Cazorla-Amorós,et al.  A comparison of hydrogen storage in activated carbons and a metal–organic framework (MOF-5) , 2010 .

[32]  Mohamed Eddaoudi,et al.  Highly Porous and Stable Metal−Organic Frameworks: Structure Design and Sorption Properties , 2000 .

[33]  I. Smirnova,et al.  Adsorption of Drugs on Silica Aerogels , 2003 .

[34]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[35]  A. Matzger,et al.  A porous coordination copolymer with over 5000 m2/g BET surface area. , 2009, Journal of the American Chemical Society.

[36]  D. Azevedo,et al.  Adsorption Equilibria of Natural Gas Components on Activated Carbon: Pure and Mixed Gas Isotherms , 2008 .

[37]  G. Kalies,et al.  A novel copper-based MOF material: Synthesis, characterization and adsorption studies , 2011 .

[38]  A. Dailly,et al.  Thermodynamic study of the adsorbed hydrogen phase in Cu-based metal-organic frameworks at cryogenic temperatures , 2009 .

[39]  Bo Wang,et al.  Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites , 2009, Proceedings of the National Academy of Sciences.

[40]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[41]  Andreas Züttel,et al.  Hydrogen storage in carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.

[42]  S. Kaskel,et al.  Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties , 2007 .

[43]  F. Darkrim,et al.  Review of hydrogen storage by adsorption in carbon nanotubes , 2002 .

[44]  Qiang Zhao,et al.  Hydrogen storage in several microporous zeolites , 2007 .

[45]  Paul A. Anderson,et al.  Hydrogen adsorption in zeolites a, x, y and rho , 2003 .

[46]  P. Harting,et al.  Thermodynamic Description of Excess Isotherms in High-Pressure Adsorption of Methane, Argon and Nitrogen , 2002 .

[47]  Li Zhou,et al.  Progress and problems in hydrogen storage methods , 2005 .

[48]  Y. S. Lin,et al.  Adsorption and Diffusion of Carbon Dioxide on Metal−Organic Framework (MOF-5) , 2009 .

[49]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[50]  Andreas Züttel,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[51]  D. Azevedo,et al.  Methane Adsorption Storage Using Microporous Carbons Obtained from Coconut Shells , 2005 .

[52]  J. Garche,et al.  Hydrogen adsorption on carbon materials , 1999 .

[53]  Omar M Yaghi,et al.  Exceptional H2 saturation uptake in microporous metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[54]  Mario Conte,et al.  Overview of energy/hydrogen storage: state-of-the-art of the technologies and prospects for nanomaterials , 2004 .

[55]  Rafael B. Rios,et al.  Experimental analysis of the efficiency on charge/discharge cycles in natural gas storage by adsorption , 2011 .

[56]  F. Dreisbach,et al.  High Pressure Adsorption Data of Methane, Nitrogen, Carbon Dioxide and their Binary and Ternary Mixtures on Activated Carbon , 1999 .

[57]  A. Dailly,et al.  On the nature of the adsorbed hydrogen phase in microporous metal-organic frameworks at supercritical temperatures. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[58]  S. Sircar Gibbsian Surface Excess for Gas AdsorptionRevisited , 1999 .

[59]  Shangzhao Shi,et al.  Research frontier on new materials and concepts for hydrogen storage , 2007 .

[60]  Randall Q Snurr,et al.  Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[61]  Jörg Fink,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[62]  De-hai Wu,et al.  Measuring hydrogen storage capacity of carbon nanotubes by high-pressure microbalance , 2005 .

[63]  K. Cychosz,et al.  A microporous copper metal-organic framework with high H2 and CO2 adsorption capacity at ambient pressure. , 2011, Angewandte Chemie.

[64]  David Book,et al.  Characterisation of porous hydrogen storage materials: carbons, zeolites, MOFs and PIMs. , 2011, Faraday discussions.

[65]  H. Bajaj,et al.  Adsorption of hydrogen in nickel and rhodium exchanged zeolite X , 2008 .

[66]  A. Jiménez-lópez,et al.  Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures , 2007 .

[67]  V. Kazansky,et al.  Low temperature hydrogen adsorption on sodium forms of faujasites: barometric measurements and drift spectra , 1998 .

[68]  A. Dailly,et al.  Thermodynamics of hydrogen adsorption in MOF-177 at low temperatures: measurements and modelling , 2009, Nanotechnology.

[69]  Hydrogen storage in Chabazite zeolite frameworks. , 2005, Physical chemistry chemical physics : PCCP.

[70]  Hui-Ming Cheng,et al.  Hydrogen storage in carbon nanotubes , 2001 .

[71]  Y. Hu,et al.  Hydrogen Storage in Metal–Organic Frameworks , 2010, Advanced materials.

[72]  S. Ernst,et al.  Zeolites as media for hydrogen storage , 1995 .

[73]  Michael Hirscher,et al.  Nanostructures with high surface area for hydrogen storage , 2005 .