New formulae for higher order derivatives and applications
暂无分享,去创建一个
[1] E. Filter,et al. Translations of fields represented by spherical-harmonic expansions for molecular calculations , 1975 .
[2] W J Lentz,et al. Generating bessel functions in mie scattering calculations using continued fractions. , 1976, Applied optics.
[3] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[4] E. J. Weniger,et al. The Fourier transforms of some exponential‐type basis functions and their relevance to multicenter problems , 1983 .
[5] Eddy Pariguan,et al. On hypergeometric functions and Pochhammer -symbol. , 2004 .
[6] E. Steinborn,et al. Translations of fields represented by spherical-harmonic expansions for molecular calculations , 1975 .
[7] R. Waldron. The Integration of Bessel Functions , 1968 .
[8] W Bosch,et al. On the computation of derivatives of Legendre functions , 2000 .
[9] Hassan Safouhi,et al. The properties of sine, spherical Bessel and reduced Bessel functions for improving convergence of semi-infinite very oscillatory integrals: the evaluation of three-centre nuclear attraction integrals over B functions , 2001 .
[10] Von R. Hoppe. Ueber independente Darstellung der höheren Differentialquotienten , 1871 .
[11] Hassan Safouhi,et al. An extremely efficient approach for accurate and rapid evaluation of three-centre two-electron Coulomb and hybrid integrals over B functions , 2001 .
[12] Stan Wagon,et al. The SIAM 100-Digit Challenge - A study in High-Accuracy Numerical Computing , 2004, The SIAM 100-Digit Challenge.
[13] Hassan Safouhi,et al. Numerical treatment of a twisted tail using extrapolation methods , 2008, Numerical Algorithms.
[14] H. Safouhi,et al. ANALYTICAL TREATMENT OF NUCLEAR MAGNETIC SHIELDING TENSOR INTEGRALS OVER EXPONENTIAL-TYPE FUNCTIONS , 2008 .
[15] H. Safouhi,et al. The S and G transformations for computing three-center nuclear attraction integrals , 2009 .
[16] D. Griffiths,et al. Introduction to Quantum Mechanics , 1960 .
[17] David Levin,et al. Two New Classes of Nonlinear Transformations for Accelerating the Convergence of Infinite Integrals and Series , 1981 .
[18] H. L. Gray,et al. A new method for approximating improper integrals , 1992 .
[19] Hassan Safouhi,et al. Efficient and rapid numerical evaluation of the two-electron, four-center Coulomb integrals using nonlinear transformations and useful properties of Sine and Bessel functions , 2002 .
[20] M. Weissbluth. Atoms and Molecules , 1978 .
[21] N. Asmar,et al. Partial Differential Equations with Fourier Series and Boundary Value Problems , 2004 .
[22] Warren P. Johnson. The Curious History of Faà di Bruno's Formula , 2002, Am. Math. Mon..
[23] G. Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .
[24] R. Hoppe. Ueber independente Darstellung der höhern Differentialquotienten und den Gebrauch des Summenzeichens. , .
[25] Hassan Safouhi,et al. The Fourier transform method and the SD approach for the analytical and numerical treatment of multicenter overlap-like quantum similarity integrals , 2006, J. Comput. Phys..
[26] Hassan Safouhi,et al. A new algorithm for accurate and fast numerical evaluation of hybrid and three-centre two-electron Coulomb integrals over Slater-type functions , 2003 .
[27] H. P. Trivedi,et al. Fourier transform of a two-center product of exponential-type orbitals. Application to one- and two-electron multicenter integrals , 1983 .
[28] Hassan Safouhi,et al. An extremely efficient and rapid algorithm for numerical evaluation of three-centre nuclear attraction integrals over Slater-type functions , 2003 .
[29] Grotendorst,et al. Numerical evaluation of molecular one- and two-electron multicenter integrals with exponential-type orbitals via the Fourier-transform method. , 1988, Physical review. A, General physics.
[30] J. Borwein. The SIAM 100-Digit challenge: a study in high-accuracy numerical computing , 1987 .
[31] Avram Sidi,et al. Extrapolation Methods for Oscillatory Infinite Integrals , 1980 .
[32] R. Hoppe. Theorie der independenten Darstellung der höheren Differentialquotienten , .