New formulae for higher order derivatives and applications

We present new formulae (the Slevinsky-Safouhi formulae I and II) for the analytical development of higher order derivatives. These formulae, which are analytic and exact, represent the kth derivative as a discrete sum of only k+1 terms. Involved in the expression for the kth derivative are coefficients of the terms in the summation. These coefficients can be computed recursively and they are not subject to any computational instability. As examples of applications, we develop higher order derivatives of Legendre functions, Chebyshev polynomials of the first kind, Hermite functions and Bessel functions. We also show the general classes of functions to which our new formula is applicable and show how our formula can be applied to certain classes of differential equations. We also presented an application of the formulae of higher order derivatives combined with extrapolation methods in the numerical integration of spherical Bessel integral functions.

[1]  E. Filter,et al.  Translations of fields represented by spherical-harmonic expansions for molecular calculations , 1975 .

[2]  W J Lentz,et al.  Generating bessel functions in mie scattering calculations using continued fractions. , 1976, Applied optics.

[3]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[4]  E. J. Weniger,et al.  The Fourier transforms of some exponential‐type basis functions and their relevance to multicenter problems , 1983 .

[5]  Eddy Pariguan,et al.  On hypergeometric functions and Pochhammer -symbol. , 2004 .

[6]  E. Steinborn,et al.  Translations of fields represented by spherical-harmonic expansions for molecular calculations , 1975 .

[7]  R. Waldron The Integration of Bessel Functions , 1968 .

[8]  W Bosch,et al.  On the computation of derivatives of Legendre functions , 2000 .

[9]  Hassan Safouhi,et al.  The properties of sine, spherical Bessel and reduced Bessel functions for improving convergence of semi-infinite very oscillatory integrals: the evaluation of three-centre nuclear attraction integrals over B functions , 2001 .

[10]  Von R. Hoppe Ueber independente Darstellung der höheren Differentialquotienten , 1871 .

[11]  Hassan Safouhi,et al.  An extremely efficient approach for accurate and rapid evaluation of three-centre two-electron Coulomb and hybrid integrals over B functions , 2001 .

[12]  Stan Wagon,et al.  The SIAM 100-Digit Challenge - A study in High-Accuracy Numerical Computing , 2004, The SIAM 100-Digit Challenge.

[13]  Hassan Safouhi,et al.  Numerical treatment of a twisted tail using extrapolation methods , 2008, Numerical Algorithms.

[14]  H. Safouhi,et al.  ANALYTICAL TREATMENT OF NUCLEAR MAGNETIC SHIELDING TENSOR INTEGRALS OVER EXPONENTIAL-TYPE FUNCTIONS , 2008 .

[15]  H. Safouhi,et al.  The S and G transformations for computing three-center nuclear attraction integrals , 2009 .

[16]  D. Griffiths,et al.  Introduction to Quantum Mechanics , 1960 .

[17]  David Levin,et al.  Two New Classes of Nonlinear Transformations for Accelerating the Convergence of Infinite Integrals and Series , 1981 .

[18]  H. L. Gray,et al.  A new method for approximating improper integrals , 1992 .

[19]  Hassan Safouhi,et al.  Efficient and rapid numerical evaluation of the two-electron, four-center Coulomb integrals using nonlinear transformations and useful properties of Sine and Bessel functions , 2002 .

[20]  M. Weissbluth Atoms and Molecules , 1978 .

[21]  N. Asmar,et al.  Partial Differential Equations with Fourier Series and Boundary Value Problems , 2004 .

[22]  Warren P. Johnson The Curious History of Faà di Bruno's Formula , 2002, Am. Math. Mon..

[23]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[24]  R. Hoppe Ueber independente Darstellung der höhern Differentialquotienten und den Gebrauch des Summenzeichens. , .

[25]  Hassan Safouhi,et al.  The Fourier transform method and the SD approach for the analytical and numerical treatment of multicenter overlap-like quantum similarity integrals , 2006, J. Comput. Phys..

[26]  Hassan Safouhi,et al.  A new algorithm for accurate and fast numerical evaluation of hybrid and three-centre two-electron Coulomb integrals over Slater-type functions , 2003 .

[27]  H. P. Trivedi,et al.  Fourier transform of a two-center product of exponential-type orbitals. Application to one- and two-electron multicenter integrals , 1983 .

[28]  Hassan Safouhi,et al.  An extremely efficient and rapid algorithm for numerical evaluation of three-centre nuclear attraction integrals over Slater-type functions , 2003 .

[29]  Grotendorst,et al.  Numerical evaluation of molecular one- and two-electron multicenter integrals with exponential-type orbitals via the Fourier-transform method. , 1988, Physical review. A, General physics.

[30]  J. Borwein The SIAM 100-Digit challenge: a study in high-accuracy numerical computing , 1987 .

[31]  Avram Sidi,et al.  Extrapolation Methods for Oscillatory Infinite Integrals , 1980 .

[32]  R. Hoppe Theorie der independenten Darstellung der höheren Differentialquotienten , .