A framework for semi-supervised and unsupervised optimal extraction of clusters from hierarchies
暂无分享,去创建一个
Arthur Zimek | Ricardo J. G. B. Campello | Jörg Sander | Davoud Moulavi | J. Sander | R. Campello | D. Moulavi | Arthur Zimek
[1] Günther Palm,et al. On the Effects of Constraints in Semi-supervised Hierarchical Clustering , 2006, ANNPR.
[2] Hans-Peter Kriegel,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.
[3] Hans-Peter Kriegel,et al. OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.
[4] Roger E Bumgarner,et al. Clustering gene-expression data with repeated measurements , 2003, Genome Biology.
[5] Ricardo J. G. B. Campello,et al. Automatic aspect discrimination in data clustering , 2012, Pattern Recognit..
[6] Haim Levkowitz,et al. Least Square Projection: A Fast High-Precision Multidimensional Projection Technique and Its Application to Document Mapping , 2008, IEEE Transactions on Visualization and Computer Graphics.
[7] Hans-Peter Kriegel,et al. Density‐based clustering , 2011, WIREs Data Mining Knowl. Discov..
[8] Tengke Xiong,et al. Semi-supervised Parameter-Free Divisive Hierarchical Clustering of Categorical Data , 2011, PAKDD.
[9] André Hardy,et al. An examination of procedures for determining the number of clusters in a data set , 1994 .
[10] Werner Stuetzle,et al. Estimating the Cluster Tree of a Density by Analyzing the Minimal Spanning Tree of a Sample , 2003, J. Classif..
[11] John A. Hartigan,et al. Clustering Algorithms , 1975 .
[12] Chinatsu Aone,et al. Fast and effective text mining using linear-time document clustering , 1999, KDD '99.
[13] Haifeng Zhao,et al. Hierarchical Agglomerative Clustering with Ordering Constraints , 2010, 2010 Third International Conference on Knowledge Discovery and Data Mining.
[14] Daniel T. Larose,et al. Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .
[15] S. S. Ravi,et al. Agglomerative Hierarchical Clustering with Constraints: Theoretical and Empirical Results , 2005, PKDD.
[16] Hans-Peter Kriegel,et al. Visually Mining through Cluster Hierarchies , 2004, SDM.
[17] Christian Böhm,et al. HISSCLU: a hierarchical density-based method for semi-supervised clustering , 2008, EDBT '08.
[18] Zhiyong Lu,et al. Automatic Extraction of Clusters from Hierarchical Clustering Representations , 2003, PAKDD.
[19] Arnold W. M. Smeulders,et al. The Amsterdam Library of Object Images , 2004, International Journal of Computer Vision.
[20] Evelina Lamma,et al. Automatic Cluster Selection Using Index Driven Search Strategy , 2009, AI*IA.
[21] S. S. Ravi,et al. Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results , 2009, Data Mining and Knowledge Discovery.
[22] Andreas Nürnberger,et al. Creating a Cluster Hierarchy under Constraints of a Partially Known Hierarchy , 2008, SDM.
[23] Mohammed Benkhalifa,et al. Integrating WordNet knowledge to supplement training data in semi‐supervised agglomerative hierarchical clustering for text categorization , 2001, Int. J. Intell. Syst..
[24] Jon R. Kettenring,et al. The Practice of Cluster Analysis , 2006, J. Classif..
[25] Claire Cardie,et al. Intelligent Clustering with Instance-Level Constraints , 2002 .
[26] A. Bensaid,et al. Data mining for text categorization with semi‐supervised agglomerative hierarchical clustering , 2000 .
[27] Adrian E. Raftery,et al. Model-based clustering and data transformations for gene expression data , 2001, Bioinform..
[28] Rainer Alt,et al. IEEE/WIC/ACM International Conference on Web Intelligence , 2015, WI-IAT.
[29] Georges Hébrail,et al. Interactive Interpretation of Hierarchical Clustering , 1997, Intell. Data Anal..
[30] Sadaaki Miyamoto,et al. Semi-supervised agglomerative hierarchical clustering algorithms with pairwise constraints , 2010, International Conference on Fuzzy Systems.
[31] Daniel A. Keim,et al. An Efficient Approach to Clustering in Large Multimedia Databases with Noise , 1998, KDD.
[32] Martin Ester,et al. Density‐based clustering , 2019, WIREs Data Mining Knowl. Discov..
[33] Luc De Raedt,et al. Top-Down Induction of Clustering Trees , 1998, ICML.
[34] Tao Li,et al. Semi-supervised Hierarchical Clustering , 2011, 2011 IEEE 11th International Conference on Data Mining.
[35] Saso Dzeroski,et al. Clustering Trees with Instance Level Constraints , 2007, ECML.
[36] Michel Herbin,et al. Estimation of the number of clusters and influence zones , 2001, Pattern Recognit. Lett..
[37] Günther Palm,et al. On the robustness of semi-supervised hierarchical graph clustering in functional genomics , 2007 .
[38] George Karypis,et al. Hierarchical Clustering Algorithms for Document Datasets , 2005, Data Mining and Knowledge Discovery.
[39] Ian Davidson,et al. Constrained Clustering: Advances in Algorithms, Theory, and Applications , 2008 .
[40] L. Hubert,et al. Comparing partitions , 1985 .
[41] Joydeep Ghosh,et al. Hierarchical Density Shaving: A clustering and visualization framework for large biological datasets , 2006, Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06).
[42] Anil K. Jain,et al. Algorithms for Clustering Data , 1988 .
[43] G. W. Milligan,et al. An examination of procedures for determining the number of clusters in a data set , 1985 .
[44] Sadaaki Miyamoto,et al. On Agglomerative Hierarchical Clustering Using Clusterwise Tolerance Based Pairwise Constraints , 2012, J. Adv. Comput. Intell. Intell. Informatics.
[45] Georges Hébrail,et al. Interactive Interpretation of Hierarchical Clustering , 1998, Intell. Data Anal..
[46] Joydeep Ghosh,et al. Automated Hierarchical Density Shaving: A Robust Automated Clustering and Visualization Framework for Large Biological Data Sets , 2010, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[47] B. Everitt,et al. Cluster Analysis: Low Temperatures and Voting in Congress , 2001 .
[48] Dan Klein,et al. From Instance-level Constraints to Space-Level Constraints: Making the Most of Prior Knowledge in Data Clustering , 2002, ICML.
[49] Ian Davidson,et al. Measuring Constraint-Set Utility for Partitional Clustering Algorithms , 2006, PKDD.
[50] Sang-goo Lee,et al. An effective document clustering method using user-adaptable distance metrics , 2002, SAC '02.
[51] Faïez Gargouri,et al. $\mathcal{SHACUN}$ : Semi-supervised Hierarchical Active Clustering Based on Ranking Constraints , 2012, ICDM.
[52] Andreas Nürnberger,et al. Personalized Hierarchical Clustering , 2006, 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06).
[53] Andreas Nürnberger,et al. User Oriented Hierarchical Information Organization and Retrieval , 2007, ECML.
[54] Jörg Sander,et al. Semi-supervised Density-Based Clustering , 2009, 2009 Ninth IEEE International Conference on Data Mining.
[55] Jiawei Han,et al. gSkeletonClu: Density-Based Network Clustering via Structure-Connected Tree Division or Agglomeration , 2010, 2010 IEEE International Conference on Data Mining.
[56] André Carlos Ponce de Leon Ferreira de Carvalho,et al. Efficiency issues of evolutionary k-means , 2011, Appl. Soft Comput..
[57] Ian Davidson,et al. Incorporating SAT solvers into hierarchical clustering algorithms: an efficient and flexible approach , 2011, KDD.
[58] W. Stuetzle,et al. A Generalized Single Linkage Method for Estimating the Cluster Tree of a Density , 2010 .