The Sgp3 locus derived from the 129 strain is responsible for enhanced endogenous retroviral expression in macroH2A1-deficient mice.

[1]  I. Dunand-Sauthier,et al.  TLR-mediated up-regulation of serum retroviral gp70 is controlled by the Sgp loci of lupus-prone mice. , 2010, Journal of autoimmunity.

[2]  S. Akira,et al.  Critical role of TLR7 in the acceleration of systemic lupus erythematosus in TLR9-deficient mice. , 2010, Journal of autoimmunity.

[3]  I. Dunand-Sauthier,et al.  Selective Up-Regulation of Intact, but Not Defective env RNAs of Endogenous Modified Polytropic Retrovirus by the Sgp3 Locus of Lupus-Prone Mice1 , 2009, The Journal of Immunology.

[4]  R. Tucker,et al.  Dissection of Genetic Mechanisms Governing the Expression of Serum Retroviral gp70 Implicated in Murine Lupus Nephritis1 , 2008, The Journal of Immunology.

[5]  J. Pehrson,et al.  macroH2A1-Dependent Silencing of Endogenous Murine Leukemia Viruses , 2008, Molecular and Cellular Biology.

[6]  J. Boyle,et al.  The Bxs6 Locus of BXSB Mice Is Sufficient for High-Level Expression of gp70 and the Production of gp70 Immune Complexes1 , 2007, The Journal of Immunology.

[7]  K. Mclaughlin,et al.  Developmental Changes in Histone macroH2A1-Mediated Gene Regulation , 2007, Molecular and Cellular Biology.

[8]  Liane Gagnier,et al.  Retroviral Elements and Their Hosts: Insertional Mutagenesis in the Mouse Germ Line , 2006, PLoS genetics.

[9]  T. Moll,et al.  Differential Role of Three Major New Zealand Black-Derived Loci Linked with Yaa-Induced Murine Lupus Nephritis1 , 2005, The Journal of Immunology.

[10]  Adrian A Canutescu,et al.  Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. , 2005, Developmental cell.

[11]  Tatiana Nikitina,et al.  Dynamic relocation of epigenetic chromatin markers reveals an active role of constitutive heterochromatin in the transition from proliferation to quiescence , 2004, Journal of Cell Science.

[12]  T. Vyse,et al.  A Novel Locus Regulates Both Retroviral Glycoprotein 70 and Anti-Glycoprotein 70 Antibody Production in New Zealand Mice When Crossed with BALB/c1 , 2004, The Journal of Immunology.

[13]  W. Frankel,et al.  Characterization of the endogenous nonecotropic murine leukemia viruses of NZB/BINJ and SM/J inbred strains , 2004, Mammalian Genome.

[14]  B. Ballester,et al.  The Sgp3 Locus on Mouse Chromosome 13 Regulates Nephritogenic gp70 Autoantigen Expression and Predisposes to Autoimmunity1 , 2003, The Journal of Immunology.

[15]  M. Walport,et al.  Autoantigen Glycoprotein 70 Expression Is Regulated by a Single Locus, Which Acts as a Checkpoint for Pathogenic Anti-Glycoprotein 70 Autoantibody Production and Hence for the Corresponding Development of Severe Nephritis, in Lupus-Prone BXSB Mice1 , 2001, The Journal of Immunology.

[16]  C. Costanzi,et al.  MACROH2A2, a New Member of the MACROH2A Core Histone Family* , 2001, The Journal of Biological Chemistry.

[17]  H. Willard,et al.  Histone H2A variants and the inactive X chromosome: identification of a second macroH2A variant. , 2001, Human molecular genetics.

[18]  R. Tucker,et al.  Genetic Control of Glycoprotein 70 Autoantigen Production and Its Influence on Immune Complex Levels and Nephritis in Murine Lupus1 , 2000, The Journal of Immunology.

[19]  P. Oliver,et al.  Genetic Analysis of Gv1, a Gene Controlling Transcription of Endogenous Murine Polytropic Proviruses , 1999, Journal of Virology.

[20]  R. Jaenisch,et al.  Messenger RNAs encoding mouse histone macroH2A1 isoforms are expressed at similar levels in male and female cells and result from alternative splicing. , 1999, Nucleic acids research.

[21]  X. Montagutelli,et al.  Linkage of a major quantitative trait locus to Yaa gene‐induced lupus‐like nephritis in (NZW × C57BL/6)F1 mice , 1998, European journal of immunology.

[22]  J. Coffin,et al.  Structure and Distribution of Endogenous Nonecotropic Murine Leukemia Viruses in Wild Mice , 1998, Journal of Virology.

[23]  C. Costanzi,et al.  Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals , 1998, Nature.

[24]  J. Shaughnessy,et al.  Frequent disruption of the Nf1 gene by a novel murine AIDS virus-related provirus in BXH-2 murine myeloid lymphomas , 1995, Journal of virology.

[25]  V. Fried,et al.  MacroH2A, a core histone containing a large nonhistone region. , 1992, Science.

[26]  S. Izui,et al.  H‐2‐linked control of the Yaa gene‐induced acceleration of lupus‐like autoimmune disease in BXSB mice , 1992, European journal of immunology.

[27]  W. Frankel,et al.  A linkage map of endogenous murine leukemia proviruses. , 1990, Genetics.

[28]  P. Jolicoeur,et al.  Severe immunodeficiency disease induced by a defective murine leukaemia virus , 1989, Nature.

[29]  A. Rabson,et al.  Potential progenitor sequences of mink cell focus-forming (MCF) murine leukemia viruses: ecotropic, xenotropic, and MCF-related viral RNAs are detected concurrently in thymus tissues of AKR mice , 1988, Journal of virology.

[30]  J. Coffin,et al.  The four classes of endogenous murine leukemia virus: structural relationships and potential for recombination , 1987, Journal of virology.

[31]  R. Lerner,et al.  The Gv-1 locus coordinately regulates the expression of multiple endogenous murine retroviruses , 1985, Cell.

[32]  S. Izui,et al.  Murine serum glycoprotein gp70 behaves as an acute phase reactant , 1982, The Journal of experimental medicine.

[33]  F. Jensen,et al.  Induction of high serum levels of retroviral env gene products (gp70) in mice by bacterial lipopolysaccharide. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[34]  S. Izui,et al.  Identification of retroviral gp70 and anti-gp70 antibodies involved in circulating immune complexes in NZB X NZW mice , 1981, The Journal of experimental medicine.

[35]  A. Theofilopoulos,et al.  Association of circulating retroviral gp70-anti-gp70 immune complexes with murine systemic lupus erythematosus , 1979, The Journal of experimental medicine.

[36]  H. Morse,et al.  XenCSA: cell surface antigens related to the major glycoproteins (gp70) of xenotropic murine leukemia viruses. , 1979, Journal of immunology.

[37]  A. Theofilopoulos,et al.  Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains , 1978, The Journal of experimental medicine.

[38]  R. Lerner,et al.  Polymorphism of the major envelope glycoprotein (gp70) of murine C-type viruses: virion associated and differentiation antigens encoded by a multi-gene family , 1977, Nature.

[39]  R. Lerner,et al.  Endogenous oncornaviral gene expression in adult and fetal mice: quantitative, histologic, and physiologic studies of the major viral glycorprotein, gp70 , 1976, The Journal of experimental medicine.

[40]  Y. Obata,et al.  New mutant and congenic mouse stocks expressing the murine leukemia virus-associated thymocyte surface antigen G(IX) , 1975, The Journal of experimental medicine.

[41]  Y. Obata,et al.  Relation of GIX antigen of thymocytes to envelope glycoprotein of murine leukemia virus , 1975, The Journal of experimental medicine.

[42]  E. Vitetta,et al.  Biochemical evidence linking the GIX thymocyte surface antigen to the gp69/71 envelope glycoprotein of murine leukemia virus , 1975, The Journal of experimental medicine.

[43]  R. Lerner,et al.  The oncornavirus glycoprotein gp69/71: a constituent of the surface of normal and malignant thymocytes , 1975, The Journal of experimental medicine.

[44]  J. August,et al.  THE VIRAL ENVELOPE GLYCOPROTEIN OF MURINE LEUKEMIA VIRUS AND THE PATHOGENESIS OF IMMUNE COMPLEX GLOMERULONEPHRITIS OF NEW ZEALAND MICE , 1974, The Journal of experimental medicine.

[45]  L. Old,et al.  THE GIX SYSTEM , 1971, The Journal of experimental medicine.