Assumed strain stabilization procedure for the 9-node Lagrange shell element

An assumed strain (strain interpolation) method is used to construct a stabilization matrix for the 9-node shell element. The stabilization procedure can be justified based on the Hellinger–Reissner variational method. It involves a projection vector which is orthogonal to both linear and quadratic fields in the local co-ordinate system of each quadrature point. All terms in the development involve 2 × 2 quadrature in the 9-node element. Example problems show good accuracy and an almost optimal rate of convergence.

[1]  D. Malkus,et al.  Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .

[2]  J. W. Wissmann,et al.  Stabilization of the zero-energy modes of under-integrated isoparametric finite elements , 1987 .

[3]  Ted Belytschko,et al.  Mixed variational principles and stabilization of spurious modes in the 9-node element , 1987 .

[4]  Ted Belytschko,et al.  Assumed strain stabilization procedure for the 9‐node Lagrange plane and plate elements , 1987 .

[5]  Ted Belytschko,et al.  On the equivalence of mode decomposition and mixed finite elements based on the Hellinger—Reissner principle: part I: theory , 1986 .

[6]  Graham H. Powell,et al.  Control of zero‐energy modes in 9‐node plane element , 1986 .

[7]  Ted Belytschko,et al.  Resultant-stress degenerated-shell element , 1986 .

[8]  J. Oden,et al.  An accurate and efficient a posteriori control of hourglass instabilities in underintegrated linear and nonlinear elasticity , 1986 .

[9]  T. Belytschko,et al.  Efficient implementation of quadrilaterals with high coarse-mesh accuracy , 1986 .

[10]  J. C. Simo,et al.  On the Variational Foundations of Assumed Strain Methods , 1986 .

[11]  Wing Kam Liu,et al.  Stress projection for membrane and shear locking in shell finite elements , 1985 .

[12]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[13]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[14]  T. Pian,et al.  Rational approach for assumed stress finite elements , 1984 .

[15]  Ted Belytschko,et al.  A consistent control of spurious singular modes in the 9-node Lagrange element for the laplace and mindlin plate equations , 1984 .

[16]  E. Hinton,et al.  A nine node Lagrangian Mindlin plate element with enhanced shear interpolation , 1984 .

[17]  T. Belytschko,et al.  Shear and membrane locking in curved C0 elements , 1983 .

[18]  J. M. Kennedy,et al.  Hourglass control in linear and nonlinear problems , 1983 .

[19]  T. Belytschko,et al.  A stabilization procedure for the quadrilateral plate element with one-point quadrature , 1983 .

[20]  Richard H. Macneal,et al.  Derivation of element stiffness matrices by assumed strain distributions , 1982 .

[21]  T. Belytschko,et al.  Membrane Locking and Reduced Integration for Curved Elements , 1982 .

[22]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[23]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[24]  H. Parisch,et al.  A critical survey of the 9-node degenerated shell element with special emphasis on thin shell application and reduced integration , 1979 .

[25]  Medhat A. Haroun,et al.  Reduced and selective integration techniques in the finite element analysis of plates , 1978 .

[26]  Theodore H. H. Pian,et al.  Improvement of Plate and Shell Finite Elements by Mixed Formulations , 1977 .

[27]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[28]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[29]  E. Hinton,et al.  A new nine node degenerated shell element with enhanced membrane and shear interpolation , 1986 .

[30]  S. Ong A consistent control of spurious modes for 9-node Lagrange element , 1986 .

[31]  Ted Belytschko,et al.  Implementation and application of a 9-node Lagrange shell element with spurious mode control , 1985 .

[32]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[33]  H. Stolarski Objective Strain Acceleration Measures in Nonlinear Analysis of Structures , 1981 .