Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of l-malic acid

[1]  M. Begum,et al.  Bioconversion and saccharification of some lignocellulosic wastes by Aspergillus oryzae ITCC-4857.01 for fermentable sugar production , 2011 .

[2]  K. Shanmugam,et al.  l-Malate Production by Metabolically Engineered Escherichia coli , 2010, Applied and Environmental Microbiology.

[3]  M. Andersen,et al.  Metabolic Engineering of Filamentous Fungi , 2009 .

[4]  M. L. Nielsen,et al.  Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger , 2009, Journal of Industrial Microbiology & Biotechnology.

[5]  U. Stahl,et al.  Genetic and Metabolic Engineering in Filamentous Fungi , 2009 .

[6]  Jay D Keasling,et al.  Developing Aspergillus as a host for heterologous expression. , 2009, Biotechnology advances.

[7]  Tae Yong Kim,et al.  Metabolic engineering of Escherichia coli for the production of malic acid , 2008 .

[8]  Tomomi Matsuura,et al.  A defect of LigD (human Lig4 homolog) for nonhomologous end joining significantly improves efficiency of gene-targeting in Aspergillus oryzae. , 2008, Fungal genetics and biology : FG & B.

[9]  Wanwipa Vongsangnak,et al.  Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae , 2008, BMC Genomics.

[10]  J. Nielsen,et al.  Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger , 2008, Molecular systems biology.

[11]  Jens Nielsen,et al.  A trispecies Aspergillus microarray: Comparative transcriptomics of three Aspergillus species , 2008, Proceedings of the National Academy of Sciences.

[12]  Jack T. Pronk,et al.  Malic Acid Production by Saccharomyces cerevisiae : Engineering of Pyruvate Carboxylation , Oxaloacetate Reduction , and Malate Export † , 2007 .

[13]  J. Nielsen,et al.  Enhanced citrate production through gene insertion in Aspergillus niger. , 2008, Metabolic engineering.

[14]  M. Sauer,et al.  Microbial production of organic acids: expanding the markets. , 2008, Trends in biotechnology.

[15]  A. Straathof,et al.  Fumaric acid production by fermentation , 2008, Applied Microbiology and Biotechnology.

[16]  M. Hynes Genetic transformation of filamentous fungi , 1996, Journal of Genetics.

[17]  A. Ibrahim,et al.  Native and modified lactate dehydrogenase expression in a fumaric acid producing isolate Rhizopus oryzae 99-880 , 2007, Current Genetics.

[18]  Paul Horton,et al.  Nucleic Acids Research Advance Access published May 21, 2007 WoLF PSORT: protein localization predictor , 2007 .

[19]  J. Stefan Rokem,et al.  Organic acids: old metabolites, new themes , 2006 .

[20]  M. Machida,et al.  Impact of Aspergillus oryzae genomics on industrial production of metabolites , 2006, Mycopathologia.

[21]  K. Isono,et al.  Genome sequencing and analysis of Aspergillus oryzae , 2005, Nature.

[22]  C. Skory Inhibition of Non-Homologous End Joining and integration of DNA upon transformation of Rhizopus oryzae , 2005, Molecular Genetics and Genomics.

[23]  C. Hjort Production of food additives using filamentous fungi. , 2005 .

[24]  Johnathan E. Holladay,et al.  Top Value Added Chemicals From Biomass. Volume 1 - Results of Screening for Potential Candidates From Sugars and Synthesis Gas , 2004 .

[25]  Keiichiro Suzuki,et al.  Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Magnuson,et al.  Organic Acid Production by Filamentous Fungi , 2004 .

[27]  C. Skory Repair of plasmid DNA used for transformation of Rhizopus oryzae by gene conversion , 2004, Current Genetics.

[28]  Y. Peleg,et al.  Isoenzyme pattern and subcellular localisation of enzymes involved in fumaric acid accumulation by Rhizopus oryzae , 1989, Applied Microbiology and Biotechnology.

[29]  Y. Peleg,et al.  Malic acid accumulation by Aspergillus flavus , 1988, Applied Microbiology and Biotechnology.

[30]  Y. Peleg,et al.  Malic acid accumulation by Aspergillus flavus , 1988, Applied Microbiology and Biotechnology.

[31]  M. D. de Groot,et al.  Metabolic Control Analysis of Xylose Catabolism in Aspergillus , 2008, Biotechnology progress (Print).

[32]  T. Speed,et al.  Summaries of Affymetrix GeneChip probe level data. , 2003, Nucleic acids research.

[33]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[34]  Christian P. Kubicek,et al.  Aspergillus niger citric acid accumulation: do we understand this well working black box? , 2003, Applied Microbiology and Biotechnology.

[35]  Michael Hansen,et al.  Genetically Engineered Food , 2001 .

[36]  L. Ivanova,et al.  In vivo linearization and autonomous replication of plasmids containing human telomeric DNA in Aspergillus nidulans , 1998, Molecular and General Genetics MGG.

[37]  A. Clutterbuck,et al.  Autonomous plasmid replication in Aspergillus nidulans: AMA1 and MATE elements. , 1997, Fungal genetics and biology : FG & B.

[38]  A. Clutterbuck,et al.  Gene expression from replicating plasmids in Aspergillus nidulans , 1996, Molecular and General Genetics MGG.

[39]  N. Tsukagoshi,et al.  Sequence-specific binding sites in the Taka-amylase A G2 promoter for the CreA repressor mediating carbon catabolite repression. , 1996, Bioscience, biotechnology, and biochemistry.

[40]  H. V. van Vuuren,et al.  The mae1 gene of Schizosaccharomyces pombe encodes a permease for malate and other C4 dicarboxylic acids , 1995, Yeast.

[41]  J. Duarte,et al.  Aspergilli and lignocellulosics: enzymology and biotechnological applications. , 1994, FEMS microbiology reviews.

[42]  M. Salter,et al.  Metabolic control. , 1994, Essays in biochemistry.

[43]  R. Berka,et al.  The catR gene encoding a catalase from Aspergillus niger primary structure and elevated expression through increased gene copy number and use of a strong promoter , 1993, Molecular microbiology.

[44]  A. H. Stouthamer,et al.  Glucoamylase overexpression in Aspergillus niger: molecular genetic analysis of strains containing multiple copies of the glaA gene. , 1993, Transgenic research.

[45]  K. Kitamoto,et al.  Deletion analysis of the Taka-amylase A gene promoter using a homologous transformation system in Aspergillus oryzae. , 1992, Bioscience, biotechnology, and biochemistry.

[46]  Y. Peleg,et al.  Optimization of L‐malic acid production by Aspergillus flavus in a stirred fermentor , 1991, Biotechnology and bioengineering.

[47]  Y. Peleg,et al.  Localization of pyruvate carboxylase in organic acid-producing Aspergillus strains , 1990, Applied and environmental microbiology.

[48]  L. Thim,et al.  High Level Expression of Recombinant Genes in Aspergillus Oryzae , 1988, Bio/Technology.

[49]  J. Kelly,et al.  Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. , 1985, The EMBO journal.

[50]  S. Osmani,et al.  The sub-cellular localisation of pyruvate carboxylase and of some other enzymes in Aspergillus nidulans. , 1983, European journal of biochemistry.

[51]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[52]  D. Cove The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. , 1966, Biochimica et biophysica acta.