Systematic investigations of high‐pressure polymorphs in shocked ordinary chondrites

Shock‐induced melting textures and high‐pressure polymorphs in 178 ordinary chondrites of all chemical groups and petrologic types were investigated. The shock‐induced melting modes were classified into three types, namely pocket, line, and network. The type of shock‐induced melting depends on the petrologic type. The width of the shock‐induced melt increased with increasing the petrologic type number. The approximate estimated shock‐pressure ranges recorded in and around the shock‐induced melts of the H‐group ordinary chondrites based on the identified high‐pressure polymorphs were as follows: H3, less than 2 GPa; H4–H6, 2–6 GPa. For ordinary chondrites of the L/LL group, the values were as follows: L/LL3, 2–6 GPa; L/LL4, 2–14 GPa; L5: 14–20 GPa; LL5, 2–14 GPa; L6, 17–23 GPa; and LL6, 14–18 GPa. After adopting the estimated shock pressures into the onion shell‐structured parent body model, the shock pressure on the surface was much lower than in the interior. One possibility is that the apparent lower shock pressure on the surface is due to spallation during the impact. Considering the features of the high‐pressure polymorphs, the major disruption history of the parent bodies is different in each chemical group, although the L/LL chondrite parent bodies may have a similar major disruption history.

[1]  J. Campbell A Breakdown , 2020, The Great Belonging.

[2]  N. Tomioka,et al.  Back‐transformation mechanisms of ringwoodite and majorite in an ordinary chondrite , 2020, Meteoritics & Planetary Science.

[3]  L. Bindi,et al.  Evidence for the charge disproportionation of iron in extraterrestrial bridgmanite , 2020, Science Advances.

[4]  Miguel Ángel Martínez,et al.  New observations on high‐pressure phases in a shock melt vein in the Villalbeto de la Peña meteorite: Insights into the shock behavior of diopside , 2019, Meteoritics & Planetary Science.

[5]  M. Trieloff,et al.  Thermal history modelling of the L chondrite parent body , 2019, Astronomy & Astrophysics.

[6]  F. Brenker,et al.  Discovery of asimowite, the Fe-analog of wadsleyite, in shock-melted silicate droplets of the Suizhou L6 and the Quebrada Chimborazo 001 CB3.0 chondrites , 2019, American Mineralogist.

[7]  Derek C. Richardson,et al.  A new hybrid framework for simulating hypervelocity asteroid impacts and gravitational reaccumulation , 2019, Icarus.

[8]  K. Litasov,et al.  Formation Parameters of High-Pressure Minerals in the Dhofar 717 and 864 Chondrite Meteorites , 2019, Doklady Earth Sciences.

[9]  YuanHua Xiao,et al.  Petrography, mineral chemistry and shock metamorphism of the Mangui meteorite , 2018, Chinese Science Bulletin.

[10]  A. Bischoff,et al.  Shock stage distribution of 2280 ordinary chondrites—Can bulk chondrites with a shock stage of S6 exist as individual rocks? , 2018, Meteoritics & Planetary Science.

[11]  R. Wieler,et al.  Brecciation among 2280 ordinary chondrites – Constraints on the evolution of their parent bodies , 2018, Geochimica et Cosmochimica Acta.

[12]  W. Hsu,et al.  The nature of the L chondrite parent body's disruption as deduced from high‐pressure phases in the Sixiangkou L6 chondrite , 2018 .

[13]  N. Tomioka,et al.  Cathodoluminescence of high‐pressure feldspar minerals as a shock barometer , 2018 .

[14]  M. Anand,et al.  High pressure minerals in the Château-Renard (L6) ordinary chondrite: implications for collisions on its parent body , 2018, Scientific Reports.

[15]  Ye Li,et al.  Multiple impact events on the L‐chondritic parent body: Insights from SIMS U‐Pb dating of Ca‐phosphates in the NWA 7251 L‐melt breccia , 2018 .

[16]  D. Stöffler,et al.  Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system , 2018 .

[17]  V. Prakapenka,et al.  Structure analysis and conditions of formation of akimotoite in the Tenham chondrite , 2018 .

[18]  A. Yamaguchi,et al.  Albite dissociation reaction in the Northwest Africa 8275 shocked LL chondrite and implications for its impact history , 2017 .

[19]  A. Yamaguchi,et al.  High‐pressure polymorphs in Yamato‐790729 L6 chondrite and their significance for collisional conditions , 2017 .

[20]  K. Kurosawa,et al.  Hydrocode modeling of the spallation process during hypervelocity impacts: Implications for the ejection of Martian meteorites , 2017, 1709.00561.

[21]  N. Tomioka,et al.  High‐pressure minerals in shocked meteorites , 2017 .

[22]  K. Litasov,et al.  Majorite-olivine–high-Ca pyroxene assemblage in the shock-melt veins of Pervomaisky L6 chondrite , 2017 .

[23]  Yangting Lin,et al.  Shock-induced P-T conditions and formation mechanism of akimotoite-pyroxene glass assemblages in the Grove Mountains (GRV) 052082 (L6) meteorite , 2017 .

[24]  E. Walton,et al.  Mechanisms of ringwoodite formation in shocked meteorites: Evidence from L5 chondrite Dhofar 1970 , 2017 .

[25]  L. Bindi,et al.  Discovery of the Fe-analogue of akimotoite in the shocked Suizhou L6 chondrite , 2017, Scientific Reports.

[26]  T. Sharp,et al.  High‐pressure phases in shock‐induced melt of the unique highly shocked LL6 chondrite Northwest Africa 757 , 2016 .

[27]  Jesse S. Smith,et al.  Ahrensite, γ-Fe 2 SiO 4 , a new shock-metamorphic mineral from the Tissint meteorite: Implications for the Tissint shock event on Mars , 2016 .

[28]  Motoo Ito,et al.  Discovery of natural MgSiO3 tetragonal garnet in a shocked chondritic meteorite , 2016, Science Advances.

[29]  T. Sharp,et al.  A large shock vein in L chondrite Roosevelt County 106: Evidence for a long‐duration shock pulse on the L chondrite parent body , 2015 .

[30]  L. Taylor,et al.  Tissintite, (Ca, Na, □)AlSi 2 O 6 , a highly-defective, shock-induced, high-pressure clinopyroxene in the Tissint martian meteorite , 2015 .

[31]  D. Schryvers,et al.  From olivine to ringwoodite: a TEM study of a complex process , 2015 .

[32]  Ming Chen,et al.  Shock-produced akimotoite in the Suizhou L6 chondrite , 2015, Science China Earth Sciences.

[33]  A. Muxworthy,et al.  Pressure–temperature evolution of primordial solar system solids during impact-induced compaction , 2014, Nature Communications.

[34]  G. Rossman,et al.  Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite , 2014, Science.

[35]  Brandon C. Johnson,et al.  Jetting during vertical impacts of spherical projectiles , 2014 .

[36]  T. Hiroi,et al.  MULTIPLE AND FAST: THE ACCRETION OF ORDINARY CHONDRITE PARENT BODIES , 2014, 1405.6850.

[37]  K. Litasov,et al.  Jadeite in Chelyabinsk meteorite and the nature of an impact event on its parent body , 2014, Scientific Reports.

[38]  T. Sharp,et al.  The Coexistence of Wadsleyite and Ringwoodite in L/LL Chondrite SAH 293: Constraints on Shock Pressure Conditions and Olivine Transformation , 2014 .

[39]  M. Nishijima,et al.  Jadeite formation in shocked ordinary chondrites , 2013 .

[40]  P. Gillet,et al.  Shock Events in the Solar System: The Message from Minerals in Terrestrial Planets and Asteroids , 2013 .

[41]  E. Scott,et al.  The pressures and temperatures of meteorite impact: Evidence from micro-Raman mapping of mineral phases in the strongly shocked Taiban ordinary chondrite , 2013 .

[42]  S. Chakraborty,et al.  H-chondrite parent asteroid: A multistage cooling, fragmentation and re-accretion history constrained by thermometric studies, diffusion kinetic modeling and geochronological data , 2013 .

[43]  D. C. Presnall Phase Diagrams of Earth‐Forming Minerals , 2013 .

[44]  D. Kring,et al.  40Ar/39Ar ages of impacts involving ordinary chondrite meteorites , 2013 .

[45]  Yangting Lin,et al.  Estimating compositions of natural ringwoodite in the heavily shocked Grove Mountains 052049 meteorite from Raman spectra , 2011 .

[46]  S. Bérczi,et al.  Ringwoodite microstructures in L-chondrite NWA 5011: implications for transformation mechanism and source region in L parent body , 2011 .

[47]  M. Nishijima,et al.  Coherent and subsequent incoherent ringwoodite growth in olivine of shocked L6 chondrites , 2010 .

[48]  R. Jones,et al.  Feldspar in type 4–6 ordinary chondrites: Metamorphic processing on the H and LL chondrite parent bodies , 2010 .

[49]  M. Nishijima,et al.  Fractional crystallization of olivine melt inclusion in shock-induced chondritic melt vein , 2009 .

[50]  M. Miyahara,et al.  Transformation textures, mechanisms of formation of high‐pressure minerals in shock melt veins of L6 chondrites, and pressure‐temperature conditions of the shock events , 2009 .

[51]  A. Simionovici,et al.  Akimotoite in the Tenham meteorite: Crystal chemistry and high-pressure transformation mechanisms , 2008 .

[52]  R. Hemley,et al.  Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami , 2008 .

[53]  K. Leinenweber,et al.  A new mineral with an olivine structure and pyroxene composition in the shock-induced melt veins of Tenham L6 chondrite , 2008 .

[54]  A. Simionovici,et al.  Evidence for fractional crystallization of wadsleyite and ringwoodite from olivine melts in chondrules entrained in shock-melt veins , 2008, Proceedings of the National Academy of Sciences.

[55]  Ming Chen,et al.  Two distinct assemblages of high‐pressure liquidus phases in shock veins of the Sixiangkou meteorite , 2008 .

[56]  B. Schmitz,et al.  Noble gases in fossil micrometeorites and meteorites from 470 Myr old sediments from southern Sweden, and new evidence for the L‐chondrite parent body breakup event , 2008 .

[57]  J. Chen,et al.  A microstructural investigation of natural lamellar ringwoodite in olivine of the shocked Sixiangkou chondrite , 2007 .

[58]  Lin‐gun Liu,et al.  High-Pressure Phase Transitions of the Feldspars, and Further Characterization of Lingunite , 2007 .

[59]  T. Sharp,et al.  Host rock solid-state transformation in a shock-induced melt vein of Tenham L6 chondrite , 2007 .

[60]  T. Sharp,et al.  Estimating shock pressures based on high‐pressure minerals in shock‐induced melt veins of L chondrites , 2006 .

[61]  Rucheng Wang,et al.  Pyroxene polymorphs in melt veins of the heavily shocked Sixiangkou L6 chondrite , 2006 .

[62]  E. Ohtani,et al.  High-pressure minerals in shocked L6-chondrites: constraints on impact conditions , 2006 .

[63]  A. Goresy,et al.  Fracture‐related intracrystalline transformation of olivine to ringwoodite in the shocked Sixiangkou meteorite , 2006 .

[64]  P. Decarli,et al.  High-pressure phases in a shock-induced melt vein of the Tenham L6 chondrite: Constraints on shock pressure and duration , 2006 .

[65]  P. Beck,et al.  Timescales of shock processes in chondritic and martian meteorites , 2005, Nature.

[66]  E. Libowitzky,et al.  Ringwoodite-Olivine Assemblages in Dhofar 922 L6 Melt Veins , 2005 .

[67]  T. Sharp,et al.  High‐pressure phases in shock‐induced melt veins of the Umbarger L6 chondrite: Constraints of shock pressure , 2004 .

[68]  T. Kondo,et al.  Formation of high-pressure minerals in shocked L6 chondrite Yamato 791384: constraints on shock conditions and parent body size , 2004 .

[69]  P. Gillet,et al.  Ringwoodite lamellae in olivine: Clues to olivine-ringwoodite phase transition mechanisms in shocked meteorites and subducting slabs. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[70]  H. Mao,et al.  Tuite, γ-Ca 3 (PO 4 ) 2 : a new mineral from the Suizhou L6 chondrite , 2003 .

[71]  H. Mao,et al.  Natural CaTi2O4-structured FeCr2O4 polymorph in the Suizhou meteorite and its significance in mantle mineralogy , 2003 .

[72]  Daniel T. Britt,et al.  Stony meteorite porosities and densities: A review of the data through 2001 , 2003 .

[73]  M. Trieloff,et al.  Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry , 2003, Nature.

[74]  M. Kimura,et al.  The breakdown of diopside to Ca-rich majorite and glass in a shocked H chondrite , 2003 .

[75]  N. Tomioka,et al.  Letters. Natural occurrence of Fe2SiO4 -spinel in the shocked Umbarger L6 chondrite , 2002 .

[76]  N. Tomioka,et al.  Shock‐induced transition of NaAlSi3O8 feldspar into a hollandite structure in a L6 chondrite , 2000 .

[77]  Tomoki Nakamura,et al.  Impact-Induced Textural Changes of CV Carbonaceous Chondrites: Experimental Reproduction , 2000 .

[78]  L. Dubrovinsky,et al.  Natural NaAlSi(3)O(8)-hollandite in the shocked sixiangkou meteorite , 2000, Science.

[79]  T. Sekine,et al.  Experimental shock metamorphism of the Murchison CM carbonaceous chondrite , 1999 .

[80]  N. Tomioka,et al.  Akimotoite, (Mg,Fe)SiO3, a new silicate mineral of the ilmenite group in the Tenham chondrite , 1999 .

[81]  W. Durham,et al.  Polymorphic transformations between olivine, wadsleyite and ringwoodite: mechanisms of intracrystalline nucleation and the role of elastic strain , 1998, Mineralogical Magazine.

[82]  T. Sharp,et al.  Cooling rates in the shock veins of chondrites: constraints on the (Mg, Fe)2SiO4 polymorph transformations , 1998 .

[83]  D. Sears,et al.  REGOLITH AND MEGAREGOLITH FORMATION OF H-CHONDRITES : THERMAL CONSTRAINTS ON THE PARENT BODY , 1998 .

[84]  N. Tomioka,et al.  Natural (Mg,Fe)SiO3-ilmenite and -perovskite in the Tenham meteorite. , 1997, Science.

[85]  T. Sharp,et al.  Natural Occurrence of MgSiO3-Ilmenite and Evidence for MgSiO3-Perovskite in a Shocked L Chondrite , 1997 .

[86]  H. McSween,et al.  Revised model calculations for the thermal histories of ordinary chondrite parent bodies , 1996 .

[87]  Jianzhong Zhang,et al.  Melting experiments on anhydrous peridotite KLB-1: Compositions of magmas in the upper mantle and transition zone , 1996 .

[88]  T. Sharp,et al.  The Majorite-Pyrope + Magnesiowüstite Assemblage: Constraints on the History of Shock Veins in Chondrites , 1996, Science.

[89]  C. Agee,et al.  Pressure‐temperature phase diagram for the Allende meteorite , 1995 .

[90]  F. Langenhorst,et al.  Thermal and shock metamorphism of the Tenham chondrite: A TEM examination , 1995 .

[91]  Jianzhong Zhang,et al.  Melting experiments on anhydrous peridotite KLB‐1 from 5.0 to 22.5 GPa , 1994 .

[92]  M. Nolan,et al.  Velocity Distributions among Colliding Asteroids , 1994 .

[93]  K. Keil,et al.  Shock metamorphism of ordinary chondrites , 1991 .

[94]  E. Scott,et al.  Shock metamorphism of carbonaceous chondrites , 1991 .

[95]  K. Fujino,et al.  Stability of majorite (Mg, Fe)SiO3 at high pressures and 1800°C , 1991 .

[96]  T. Ahrens,et al.  Impact spallation experiments: Fracture patterns and spall velocities , 1990 .

[97]  Alexandra Navrotsky,et al.  Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application , 1989 .

[98]  Manabu Kato,et al.  A dense polymorph of Ca3(PO4)2: a high pressure phase of apatite decomposition and its geochemical significance , 1986 .

[99]  A. Rubin,et al.  THE BROWNELL AND NESS COUNTY (1894) L6 CHONDRITES: FURTHER SORTING-OUT OF NESS COUNTY METEORITES , 1984 .

[100]  H. Melosh Impact ejection, spallation, and the origin of meteorites , 1984 .

[101]  A. Putnis,et al.  Wadsleyite, natural beta -(Mg, Fe) 2 SiO 4 from the Peace River Meteorite , 1983 .

[102]  G. Kullerud,et al.  Petrology and shock metamorphism of Pampa del Infierno chondrite , 1982 .

[103]  A. Putnis,et al.  High-pressure (Mg, Fe)2SiO4 phases in the Tenham chondritic meteorite , 1979, Nature.

[104]  J. Smith,et al.  Coorara and Coolamon Meteorites: Ringwoodite and Mineralogical Differences , 1978 .

[105]  L. Coleman Ringwoodite and majorite in the Catherwood meteorite , 1977 .

[106]  B. Mason Notes on Australian meteorites , 1974 .

[107]  B. Mason,et al.  Pyroxene-Garnet Transformation in Coorara Meteorite , 1970, Science.

[108]  R. Binns,et al.  Ringwoodite, Natural (Mg,Fe)2SiO4 Spinel in the Tenham Meteorite , 1969, Nature.

[109]  J. Nelen,et al.  Olivine-Garnet Transformation in a Meteorite , 1968, Science.

[110]  E. Shoemaker,et al.  First Natural Occurrence of Coesite , 1960, Science.

[111]  L. Coes High‐pressure Minerals , 1955 .

[112]  K. Litasov,et al.  “Spherulite-like” jadeite growth in shock-melt veins of the Novosibirsk H5/6 chondrite , 2017 .

[113]  W. Du,et al.  Stability region of K0.2Na0.8AlSi3O8 hollandite at 22 GPa and 2273 K , 2016, Physics and Chemistry of Minerals.

[114]  E. Scott,et al.  Chondrites and Their Components , 2014 .

[115]  Alan E. Rubin,et al.  Thermal Metamorphism in Chondrites , 2006 .

[116]  P. Decarli,et al.  Shock Effects in Meteorites , 2006 .

[117]  A. Goresy,et al.  Back-transformation of high-pressure phases in a shock melt vein of an H-chondrite during atmospheric passage: Implications for the survival of high-pressure phases after decompression , 2004 .

[118]  A. Greshake The primitive matrix components of the unique carbonaceous chondrite Acfer 094: a TEM study. , 1997, Geochimica et cosmochimica acta.

[119]  T. Sharp,et al.  Microstructures of High-Pressure Minerals in Shocked Chondrites: Constraints on the Duration of Shock Events , 1996 .

[120]  N. Fujii,et al.  Ordinary chondrite parent body - An internal heating model , 1982 .

[121]  E. Scott,et al.  Metallic minerals, thermal histories and parent bodies of some xenolithic, ordinary chondrite meteorites , 1981 .

[122]  E. Ohtani MELTING RELATION OF Fe2SiO4 UP TO ABOUT 20Okbar , 1979 .

[123]  Lin‐gun Liu High-pressure phase transformations of albite, jadeite and nepheline , 1978 .

[124]  D. J. Milton,et al.  Stishovite, SiO2, a very high pressure new mineral from Meteor Crater, Arizona , 1962 .